Patents by Inventor See Hiong Leow

See Hiong Leow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240071990
    Abstract: A semiconductor device assembly including a semiconductor device having a plurality of pillars disposed on a backside surface of the semiconductor device; and a substrate, including: a solder mask layer disposed on a front side surface of the substrate, a plurality of extended bond pads disposed on the frontside surface of the substrate and surrounded by the solder mask layer, the plurality of extended bond pads each having a top surface higher than a top surface of the solder mask layer, and wherein the semiconductor device is directly attached to the substrate by bonding each of the plurality of pillars of the semiconductor device to the top surface of a corresponding one of the plurality of extended bond pads with a solder connection.
    Type: Application
    Filed: August 25, 2022
    Publication date: February 29, 2024
    Inventors: Kelvin Tan Aik Boo, Seng Kim Ye, Hong Wan Ng, Ling Pan, See Hiong Leow
  • Publication number: 20240071980
    Abstract: Stacked semiconductor devices, and related systems and methods, are disclosed herein. In some embodiments, the stacked semiconductor device includes a package substrate having at least a first layer and a second layer, an interconnect extending through the package substrate, a stack of dies carried by the package substrate, and one or more wirebonds electrically coupling the stack of dies to package substrate. Each of the layers of the package substrate can include a section of the interconnect with a frustoconical shape. Each of the sections can be directly coupled together. Further, the section in an uppermost layer of the package substrate is exposed at an upper surface of the package substrate. The wirebonds can be directly coupled to the exposed surface of the uppermost section.
    Type: Application
    Filed: August 30, 2022
    Publication date: February 29, 2024
    Inventors: Kelvin Tan Aik Boo, Seng Kim Ye, Hong Wan Ng, Ling Pan, See Hiong Leow
  • Publication number: 20240074048
    Abstract: A semiconductor device assembly includes a semiconductor die, a substrate carrying the semiconductor die, and a printed circuit board (PCB) coupled to the substrate. The PCB includes a primary conductive layer including a first surface of the substrate and a first solder mask layer coupled to the first surface. The substrate also includes a secondary conductive layer including a second surface of the substrate and a second solder mask layer coupled to the second surface. The substrate further includes an inner conductive layer positioned between the primary layer and the secondary layer, where the inner layer includes a bond pad positioned at the end of an opening that extends from the first solder mask layer through the primary layer to the bond pad of the inner layer. By attaching a solder ball to the bond pad of the inner layer, standoff height is reduced.
    Type: Application
    Filed: August 23, 2022
    Publication date: February 29, 2024
    Inventors: Ling Pan, Hong Wan Ng, Kelvin Tan Aik Boo, Seng Kim Ye, See Hiong Leow
  • Publication number: 20240071869
    Abstract: A semiconductor device assembly including a substrate; a first split via including a first via land that is disposed on a surface of the substrate and that has a first footprint with a half-moon shape with a first radius of curvature, and a first via that passes through the substrate and that has a second radius of curvature, wherein the first via is disposed within the first footprint; and a second split via including a second via land that is disposed on the surface of the substrate and that has a second footprint with the half-moon shape with the first radius of curvature, and a second via that passes through the substrate and that has the second radius of curvature, wherein the second via is disposed within the second footprint, wherein the first and second via lands are disposed entirely within a circular region having the first radius of curvature.
    Type: Application
    Filed: August 23, 2022
    Publication date: February 29, 2024
    Inventors: Hong Wan Ng, Seng Kim Ye, Kelvin Tan Aik Boo, Ling Pan, See Hiong Leow
  • Publication number: 20240063135
    Abstract: Implementations described herein relate to various semiconductor device assemblies. In some implementations, a semiconductor device assembly includes a first semiconductor die, a second semiconductor die in a stacked arrangement with the first semiconductor die, and a flexible interposer disposed between the first semiconductor die and the second semiconductor die. The flexible interposer may include a first flexible layer, a second flexible layer, and a conductive trace disposed between the first flexible layer and the second flexible layer. A spacer portion of the flexible interposer may space the first semiconductor die from the second semiconductor die. A connecting portion of the flexible interposer may extend from the spacer portion beyond edges of the first semiconductor die and the second semiconductor die.
    Type: Application
    Filed: August 22, 2022
    Publication date: February 22, 2024
    Inventors: Hong Wan NG, Seng Kim YE, Kelvin Aik Boo TAN, See Hiong LEOW, Ling PAN
  • Publication number: 20240063201
    Abstract: Implementations described herein relate to various semiconductor device assemblies. In some implementations, a semiconductor device assembly may include a substrate, a flip chip die electrically coupled to the substrate via a plurality of electrical connections, and a non-conductive film disposed between the flip chip die and the substrate. The non-conductive film may surround the plurality of electrical connections and mechanically couple the flip chip die to the substrate.
    Type: Application
    Filed: August 17, 2022
    Publication date: February 22, 2024
    Inventors: See Hiong LEOW, Hong Wan NG, Seng Kim YE, Kelvin Aik Boo TAN, Ling PAN
  • Publication number: 20240063168
    Abstract: Methods, systems, and devices for wire bonding for stacked memory dies are described. A memory system may include a stack of memory dies. As the stack grows to include more and more memory dies, the length of the wires coupling the memory dies with the control circuit may increase. Bonding multiple wires using an adhesive may increase a gap between neighboring wires coupled with the same memory die or different memory dies. For example, bonding one wire to a neighboring wire may pull one or both of the bonded wires away from their original placement, increasing a gap between the bonded wires and one or more neighboring wires. Bonding the wires coupled with a lower memory die may increase a gap such that sagging wires coupled with an upper memory die may be positioned in the gap to avoid shorting with the lower wires.
    Type: Application
    Filed: August 16, 2022
    Publication date: February 22, 2024
    Inventors: See Hiong Leow, Hong Wan NG, Seng Kim Ye, Kelvin Aik Boo Tan, Ling Pan
  • Publication number: 20230268327
    Abstract: Semiconductor die assemblies with molded semiconductor dies, and associated methods and systems are disclosed. In some embodiments, a semiconductor die assembly includes a package substrate and a controller die attached to the package substrate. The semiconductor die assembly comprises a mold structure including the controller die and having a surface facing away from the package substrate. The controller die may be completely encased within the mold structure. Further, one or more stacks of semiconductor dies (e.g., memory dies) are attached to the surface of the mold structure. Accordingly, the semiconductor die assembly does not include support structures for the stacks of semiconductor dies attached above the controller die.
    Type: Application
    Filed: February 18, 2022
    Publication date: August 24, 2023
    Inventor: See Hiong Leow
  • Patent number: 9324676
    Abstract: Packaged microelectronic devices and methods of manufacturing packaged microelectronic devices are disclosed herein. In one embodiment, a method of manufacturing a microelectronic device includes forming a stand-off layer over a plurality of microelectronic dies on a semiconductor workpiece, and removing selected portions of the stand-off layer to form a plurality of stand-offs with the individual stand-offs positioned on a backside of a corresponding die. The method further includes cutting the semiconductor workpiece to singulate the dies, and attaching the stand-off on a first singulated die to a second die.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: April 26, 2016
    Assignee: Micron Technology, Inc.
    Inventors: See Hiong Leow, Liang Chee Tay
  • Patent number: 9147623
    Abstract: Stacked microelectronic devices and methods of manufacturing stacked microelectronic devices are disclosed herein. In one embodiment, a method of manufacturing a microelectronic device includes forming a plurality of electrically isolated, multi-tiered metal spacers on a front side of a first microelectronic die, and attaching a back-side surface of a second microelectronic die to individual metal spacers. In another embodiment, the method of manufacturing the microelectronic device may further include forming top-tier spacer elements on front-side wire bonds of the first die.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: September 29, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Edmund Koon Tian Lua, See Hiong Leow, Choon Kuan Lee
  • Publication number: 20150130035
    Abstract: Packaged microelectronic devices and methods of manufacturing packaged microelectronic devices are disclosed herein. In one embodiment, a method of manufacturing a microelectronic device includes forming a stand-off layer over a plurality of microelectronic dies on a semiconductor workpiece, and removing selected portions of the stand-off layer to form a plurality of stand-offs with the individual stand-offs positioned on a backside of a corresponding die. The method further includes cutting the semiconductor workpiece to singulate the dies, and attaching the stand-off on a first singulated die to a second die.
    Type: Application
    Filed: December 2, 2014
    Publication date: May 14, 2015
    Inventors: See Hiong Leow, Liang Chee Tay
  • Patent number: 8900923
    Abstract: Packaged microelectronic devices and methods of manufacturing packaged microelectronic devices are disclosed herein. In one embodiment, a method of manufacturing a microelectronic device includes forming a stand-off layer over a plurality of microelectronic dies on a semiconductor workpiece, and removing selected portions of the stand-off layer to form a plurality of stand-offs with the individual stand-offs positioned on a backside of a corresponding die. The method further includes cutting the semiconductor workpiece to singulate the dies, and attaching the stand-off on a first singulated die to a second die.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: December 2, 2014
    Assignee: Micron Technology, Inc.
    Inventors: See Hiong Leow, Liang Chee Tay
  • Publication number: 20140346683
    Abstract: Stacked microelectronic devices and methods of manufacturing stacked microelectronic devices are disclosed herein. In one embodiment, a method of manufacturing a microelectronic device includes forming a plurality of electrically isolated, multi-tiered metal spacers on a front side of a first microelectronic die, and attaching a back-side surface of a second microelectronic die to individual metal spacers. In another embodiment, the method of manufacturing the microelectronic device may further include forming top-tier spacer elements on front-side wire bonds of the first die.
    Type: Application
    Filed: August 11, 2014
    Publication date: November 27, 2014
    Inventors: Edmund Koon Tian Lua, See Hiong Leow, Choon Kuan Lee
  • Patent number: 8803307
    Abstract: Stacked microelectronic devices and methods of manufacturing stacked microelectronic devices are disclosed herein. In one embodiment, a method of manufacturing a microelectronic device includes forming a plurality of electrically isolated, multi-tiered metal spacers on a front side of a first microelectronic die, and attaching a back-side surface of a second microelectronic die to individual metal spacers. In another embodiment, the method of manufacturing the microelectronic device may further include forming top-tier spacer elements on front-side wire bonds of the first die.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: August 12, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Edmund Koon Tian Lua, See Hiong Leow, Choon Kuan Lee
  • Publication number: 20130292854
    Abstract: Stacked microelectronic devices and methods of manufacturing stacked microelectronic devices are disclosed herein. In one embodiment, a method of manufacturing a microelectronic device includes forming a plurality of electrically isolated, multi-tiered metal spacers on a front side of a first microelectronic die, and attaching a back-side surface of a second microelectronic die to individual metal spacers. In another embodiment, the method of manufacturing the microelectronic device may further include forming top-tier spacer elements on front-side wire bonds of the first die.
    Type: Application
    Filed: July 3, 2013
    Publication date: November 7, 2013
    Inventors: Edmund Koon Tian Lua, See Hiong Leow, Choon Kuan Lee
  • Patent number: 8501546
    Abstract: Stacked microelectronic devices and methods of manufacturing stacked microelectronic devices are disclosed herein. In one embodiment, a method of manufacturing a microelectronic device includes forming a plurality of electrically isolated, multi-tiered metal spacers on a front side of a first microelectronic die, and attaching a back-side surface of a second microelectronic die to individual metal spacers. In another embodiment, the method of manufacturing the microelectronic device may further include forming top-tier spacer elements on front-side wire bonds of the first die.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: August 6, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Edmund Koon Tian Lua, See Hiong Leow, Choon Kuan Lee
  • Patent number: 8399971
    Abstract: Packaged microelectronic devices and methods of manufacturing packaged microelectronic devices are disclosed herein. In one embodiment, a method of manufacturing a microelectronic device includes forming a stand-off layer over a plurality of microelectronic dies on a semiconductor workpiece, and removing selected portions of the stand-off layer to form a plurality of stand-offs with the individual stand-offs positioned on a backside of a corresponding die. The method further includes cutting the semiconductor workpiece to singulate the dies, and attaching the stand-off on a first singulated die to a second die.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: March 19, 2013
    Assignee: Micron Technology, Inc.
    Inventors: See Hiong Leow, Liang Chee Tay
  • Patent number: 8093702
    Abstract: Stacked microelectronic devices and methods of manufacturing stacked microelectronic devices are disclosed herein. In one embodiment, a method of manufacturing a microelectronic device includes forming a plurality of electrically isolated, multi-tiered metal spacers on a front side of a first microelectronic die, and attaching a back-side surface of a second microelectronic die to individual metal spacers. In another embodiment, the method of manufacturing the microelectronic device may further include forming top-tier spacer elements on front-side wire bonds of the first die.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: January 10, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Edmund Koon Tian Lua, See Hiong Leow, Choon Kuan Lee
  • Publication number: 20100237510
    Abstract: Packaged microelectronic devices and methods of manufacturing packaged microelectronic devices are disclosed herein. In one embodiment, a method of manufacturing a microelectronic device includes forming a stand-off layer over a plurality of microelectronic dies on a semiconductor workpiece, and removing selected portions of the stand-off layer to form a plurality of stand-offs with the individual stand-offs positioned on a backside of a corresponding die. The method further includes cutting the semiconductor workpiece to singulate the dies, and attaching the stand-off on a first singulated die to a second die.
    Type: Application
    Filed: June 2, 2010
    Publication date: September 23, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: See Hiong Leow, Liang Chee Tay
  • Patent number: 7741150
    Abstract: Packaged microelectronic devices and methods of manufacturing packaged microelectronic devices are disclosed herein. In one embodiment, a method of manufacturing a microelectronic device includes forming a stand-off layer over a plurality of microelectronic dies on a semiconductor workpiece, and removing selected portions of the stand-off layer to form a plurality of stand-offs with the individual stand-offs positioned on a backside of a corresponding die. The method further includes cutting the semiconductor workpiece to singulate the dies, and attaching the stand-off on a first singulated die to a second die.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: June 22, 2010
    Assignee: Micron Technology, Inc.
    Inventors: See Hiong Leow, Liang Chee Tay