Patents by Inventor Seemit Praharaj

Seemit Praharaj has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11143597
    Abstract: An electronic device and a method for predicting water ingress employ a water damage indicator including a water-dispersible coating layer which includes a water-dispersible, radiation-cured polymer. Electronic components of the device, which may be susceptible to water damage, are disposed within a casing. The water damage indicator may contact the casing of the electronic device and/or the electronic components. When water enters the casing, the water dispersible coating layer is at least partially removed, revealing the surface beneath, thereby providing an indication of potential water damage to the electronic components. The water damage indicator is not readily replaceable after manufacture, making it more difficult for a customer to disguise potential water damage to the device.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: October 12, 2021
    Assignee: XEROX CORPORATION
    Inventors: Seemit Praharaj, Jason M. LeFevre, Paul J. McConville, Douglas K. Herrmann, Chu-heng Liu
  • Patent number: 11117764
    Abstract: A vacuum roller system and a method of operating the vacuum roller system can include a group of vacuum rollers operable to move a sheet of media through a dryer. The vacuum rollers do not require a vacuum to be drawn between the vacuum rollers. Each vacuum roller can include a plenum operable to direct the vacuum to a top portion of the vacuum roller to drive the sheet of media from one roller to the next roller. The plenum can engage vacuum holes in a rotating vacuum roller when the vacuum holes in the vacuum roller are aligned with the plenum.
    Type: Grant
    Filed: November 10, 2019
    Date of Patent: September 14, 2021
    Assignee: Xerox Corporation
    Inventors: Douglas K. Herrmann, Seemit Praharaj, Michael J. Levy, Jason M. Lefevre, Paul McConville, Chu-Heng Liu, Linn C. Hoover, David A. VanKouwenberg
  • Patent number: 11110709
    Abstract: A system for cleaning and treating a printhead includes (a) a movable carriage having affixed to a base of the movable carriage a cleaning blade and an absorptive pad, (b) a low vapor pressure organic solvent, the low vapor pressure organic solvent is deliverable to the absorptive pad via a pump, the low vapor pressure organic solvent has a vapor pressure lower than water and (c) a carriage moving mechanism that moves the carriage so that the cleaning blade and the absorptive pad pass over the printhead.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: September 7, 2021
    Assignee: XEROX CORPORATION
    Inventors: Michael J. Levy, Seemit Praharaj, Jason M. LeFevre, Linn C. Hoover, Paul J. McConville, Chu-heng Liu, Douglas K. Herrmann, David A. Vankouwenberg
  • Patent number: 11077679
    Abstract: A marker transport system and a method of operating the marker transport system can include one or more print heads and a marker transport platen upon which a sheet of media moves. The transport platen can include airflow sections comprising process-direction slots. The plates can move in a cross-process direction, and can control airflow in an area under the print heads. The one or more plates in a first position can allow for airflow when the sheet of media is located at the first position and in a second position can block the airflow at the second position. A vacuum can be provided under the sheet of media as the sheet of media traverses a print path across the marker transport platen. A no-vacuum inter-document zone can be provided, which moves along with the sheet of media under the one or more print heads.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: August 3, 2021
    Assignee: Xerox Corporation
    Inventors: David A. VanKouwenberg, Seemit Praharaj, Michael J. Levy, Douglas K. Herrmann, Paul McConville, Chu-Heng Liu, Linn C. Hoover, Jason M. Lefevre
  • Patent number: 11059289
    Abstract: A directionality detector is configured for use in an inkjet printer to attenuate the effects of ink drying in the nozzles of a printhead during printing operations. The directionality detector includes an optical sensor that generates image data of a test pattern formed on media by the printer, a diffuser that emits humidified air toward the media before the media is printed, and a controller operatively connected to the optical sensor and diffuser. The controller is configured compare the image data of the test pattern to stored image data of the test pattern printed at a previous time and determine whether any difference between the two images is greater than a predetermined threshold. The controller then operates the diffuser to direct humidified air toward the media passing the diffuser using the differences between the stored image data of the test pattern and the image data of the test pattern.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: July 13, 2021
    Assignee: Xerox Corporation
    Inventors: Seemit Praharaj, Douglas K. Herrmann, Paul J. McConville, Jason M. LeFevre, Chu-heng Liu, David A. VanKouwenberg, Michael J. Levy, Linn C. Hoover, Thomas J. Wyble, John P. Meyers
  • Publication number: 20210187948
    Abstract: A directionality detector is configured for use in an inkjet printer to attenuate the effects of ink drying in the nozzles of a printhead during printing operations. The directionality detector includes an optical sensor that generates image data of a test pattern formed on media by the printer, a diffuser that emits humidified air toward the media before the media is printed, and a controller operatively connected to the optical sensor and diffuser. The controller is configured compare the image data of the test pattern to stored image data of the test pattern printed at a previous time and determine whether any difference between the two images is greater than a predetermined threshold. The controller then operates the diffuser to direct humidified air toward the media passing the diffuser using the differences between the stored image data of the test pattern and the image data of the test pattern.
    Type: Application
    Filed: December 23, 2019
    Publication date: June 24, 2021
    Inventors: Seemit Praharaj, Douglas K. Herrmann, Paul J. McConville, Jason M. LeFevre, Chu-heng Liu, David A. VanKouwenberg, Michael J. Levy, Linn C. Hoover, Thomas J. Wyble, John P. Meyers
  • Publication number: 20210187968
    Abstract: An inkjet printer includes a dryer configured to attenuate the effects of temperature differentials arising in substrates that are caused by holes in a media transport belt and a platen covering a vacuum plenum. The dryer includes a heater, a media transport belt cooler, and a media transport belt. The media transport belt is configured to move substrates past the heater after ink images have been formed on the substrates and the media transport belt cooler is positioned to remove heat energy from the media transport belt after the media transport belt has passed the heater and the substrates have separated from the media transport belt. The substrate cooler is configured to reduce a temperature of the media transport belt to a temperature that attenuates image defects arising from temperature differentials in the media transport belt when the media transport belt is opposite the heater.
    Type: Application
    Filed: December 23, 2019
    Publication date: June 24, 2021
    Inventors: Linn C. Hoover, Douglas K. Herrmann, Paul J. McConville, Jason M. LeFevre, Seemit Praharaj, David A. VanKouwenberg, Michael J. Levy, Chu-heng Liu, Santokh S. Badesha, Christopher Mieney, David S. Derleth
  • Publication number: 20210187953
    Abstract: An environmental conditioner in an aqueous inkjet printer conditions the print zone in the printer so aqueous ink at the nozzles of the printheads maintains its low viscosity state and does not dry. The environmental conditioner includes a humidifying chamber having a reservoir configured to contain a volume of water, a heater configured to heat the water in the water reservoir to a predetermined temperature range, an air inlet to move air into the humidifying chamber, an air discharge configured to remove humidified air from the humidifying chamber and direct the humidified air into a space between a faceplate of a printhead and a path for media passing by the faceplate of the printhead. The chamber can include an ultrasonic atomizer to produce a moisturized mist for absorption by the heated air or wicking material to transfer moisture to the air.
    Type: Application
    Filed: December 18, 2019
    Publication date: June 24, 2021
    Inventors: Chu-Heng Liu, Douglas K. Herrmann, Paul J. McConville, Jason M. LeFevre, Seemit Praharaj, David A. VanKouwenberg, Michael J. Levy, Linn C. Hoover, Thomas J. Wyble, John P. Meyers
  • Publication number: 20210170766
    Abstract: A marker transport system and a method of operating the marker transport system can include one or more print heads and a marker transport platen upon which a sheet of media moves. The transport platen can include airflow sections comprising process-direction slots. The plates can move in a cross-process direction, and can control airflow in an area under the print heads. The one or more plates in a first position can allow for airflow when the sheet of media is located at the first position and in a second position can block the airflow at the second position. A vacuum can be provided under the sheet of media as the sheet of media traverses a print path across the marker transport platen. A no-vacuum inter-document zone can be provided, which moves along with the sheet of media under the one or more print heads.
    Type: Application
    Filed: December 4, 2019
    Publication date: June 10, 2021
    Inventors: David A. VanKouwenberg, Seemit Praharaj, Michael J. Levy, Douglas K. Herrmann, Paul McConville, Chu-Heng Liu, Linn C. Hoover, Jason M. Lefevre
  • Patent number: 11027562
    Abstract: A printing module and a method for controlling the same are disclosed. For example, the printing module includes a plurality of printheads, a transport belt located below the plurality of printheads to transport print media below the plurality of printheads, wherein the transport belt comprises a plurality of vacuum openings, and a positive pressure plenum system, wherein the positive pressure plenum system provides a positive air flow to create an air interface between a top surface of the positive pressure plenum system and a bottom surface of the transport belt, wherein the positive pressure plenum system provides a negative air flow to create a vacuum through the plurality of vacuum openings of the transport belt to hold the print media against the transport belt.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: June 8, 2021
    Assignee: Xerox Corporation
    Inventors: Douglas K. Herrmann, Chu-heng Liu, Seemit Praharaj, Paul J. McConville, Jason Matthew LeFevre
  • Patent number: 11007797
    Abstract: An aqueous ink printer includes two drying stages that enable coated substrates to be printed with aqueous ink images. The first drying stage dries substrates uniformly in the cross-process direction and the second drying stage dries substrates non-uniformly in the cross-process direction to enable only predetermined portions of the printed substrates to be dried. The predetermined portions of the printed substrates are aligned in a process direction with nip rollers or other printer components that engage the substrates after the substrates exit the second drying stage.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: May 18, 2021
    Assignee: Xerox Corporation
    Inventors: Chu-Heng Liu, Douglas K. Herrmann, Paul J. McConville, Jason M. LeFevre, Seemit Praharaj
  • Publication number: 20210138802
    Abstract: A vacuum roller system and a method of operating the vacuum roller system can include a group of vacuum rollers operable to move a sheet of media through a dryer. The vacuum rollers do not require a vacuum to be drawn between the vacuum rollers. Each vacuum roller can include a plenum operable to direct the vacuum to a top portion of the vacuum roller to drive the sheet of media from one roller to the next roller. The plenum can engage vacuum holes in a rotating vacuum roller when the vacuum holes in the vacuum roller are aligned with the plenum.
    Type: Application
    Filed: November 10, 2019
    Publication date: May 13, 2021
    Inventors: Douglas K. Herrmann, Seemit Praharaj, Michael J. Levy, Jason M. Lefevre, Paul McConville, Chu-Heng Liu, Linn C. Hoover, David A. VanKouwenberg
  • Publication number: 20210138803
    Abstract: A marker transport system and a method of operating the marker transport system. A group of print bars is located with respect to a marker transport platen and a marker transport belt. A vacuum source and a pneumatic solenoid block are associated with the marker transport platen. The marker transport platen includes airflow sections divided into process-direction slots and cross-section direction slots. The cross-section direction slots are located beneath the print bars and are connected to the vacuum source via the pneumatic solenoid block, which facilitates an individual control of each of the cross-process direction slots. Pneumatic valves are associated with the pneumatic solenoid block, which supplies a flow of vacuum to the cross-process direction vacuum slots. The pneumatic vales can be timed to allow the vacuum to be present when a sheet is present over a corresponding vacuum slot among the process-direction slots and the cross-section direction slots.
    Type: Application
    Filed: November 10, 2019
    Publication date: May 13, 2021
    Inventors: Jason M. Lefevre, Seemit Praharaj, Michael J. Levy, Douglas K. Herrmann, Paul McConville, Chu-Heng Liu, Linn C. Hoover, David A. VanKouwenberg
  • Patent number: 10999449
    Abstract: A method for measuring a blur of a print job and adjusting printer parameters in response to the blur is disclosed. For example, the method may be performed by a multi-function device (MFD) and includes printing an image on a print media, scanning the image, calculating a blur count for each location of the image in a cross-process direction, determining that the blur count for at least one location of the image is above a blur threshold, and adjusting at least one print parameter for a subsequently printed image on the MFD.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: May 4, 2021
    Assignee: Xerox Corporation
    Inventors: Seemit Praharaj, Jason Matthew LeFevre, Christine A. Steurrys, John T. Newell, David Alan Vankouwenberg, Paul J. McConville
  • Publication number: 20210101399
    Abstract: An adhesive sign suited to use in retail applications includes a substrate layer. An adhesive layer is disposed on the substrate layer. The adhesive layer defines an exposed region for attachment to an associated structure. The adhesive layer is derived from a photo-curable inkjet composition. An ink layer is disposed on the substrate layer. The ink layer includes an image. The ink layer is derived from a photo-curable inkjet composition. The adhesive layer and ink layer can be formed in the same inkjet printing process and cured in a common photo-curing station. A stack of the adhesive signs can be assembled without interleaving a release liner between each pair of signs.
    Type: Application
    Filed: December 17, 2020
    Publication date: April 8, 2021
    Applicant: Xerox Corporation
    Inventors: Douglas K. Herrmann, Seemit Praharaj, Jason M. LeFevre, Paul J. McConville, Chu-Heng Liu
  • Publication number: 20210078814
    Abstract: A vacuum roller system and a method of operation the vacuum roller system can include an assembly of interdigitated rollers, and a vacuum system, wherein the assembly of interdigitated rollers is operably connected to the vacuum system to move sheets of media through a downstream dryer in a printer, wherein a vacuum is drawn between individual rollers among the assembly of interdigitated rollers so that the vacuum is distributed across a sheet of media and is split around the individual rollers. The spacing between the individual rollers among the assembly of interdigitated rollers is variable to vary the vacuum.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 18, 2021
    Inventors: Douglas K. Herrmann, Seemit Praharaj, Michael J. Levy, Jason M. Lefevre, Paul McConville, Chu-heng Liu, Linn C. Hoover, David A. VanKouwenberg
  • Publication number: 20210070049
    Abstract: An inkjet printer is configured with capping stations for covering printheads during periods of printer inactivity. Each capping station has a printhead receptacle that encloses a volume, at least two members pivotably mounted to the printhead receptacle so the members can move between a first position where the members are adjacent a wall of the receptacle and a second position where the members extend across the volume of the printhead receptacle, and an actuator operatively connected to the pair of members to move the members between the first position and the second position. A thermoelectric device is mounted to each member. A controller is operatively connected to the actuator to operate the first actuator to move the members between the first position and the second position and to the thermoelectric devices to selectively apply an electrical current to the devices.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 11, 2021
    Inventor: Seemit Praharaj
  • Publication number: 20210060955
    Abstract: A system for cleaning and treating a printhead includes (a) a movable carriage having affixed to a base of the movable carriage a cleaning blade and an absorptive pad, (b) a low vapor pressure organic solvent, the low vapor pressure organic solvent is deliverable to the absorptive pad via a pump, the low vapor pressure organic solvent has a vapor pressure lower than water and (c) a carriage moving mechanism that moves the carriage so that the cleaning blade and the absorptive pad pass over the printhead.
    Type: Application
    Filed: February 3, 2020
    Publication date: March 4, 2021
    Inventors: Michael J. Levy, Seemit Praharaj, Jason M. LeFevre, Linn C. Hoover, Paul J. McConville, Chu-heng Liu, Douglas K. Herrmann, David A. Vankouwenberg
  • Patent number: 10933641
    Abstract: An inkjet printer is configured with capping stations for storing printheads in the printer during periods of printer inactivity so the viscosity of the ink in the nozzles of the inkjets of the printheads does not increase significantly. Each capping station has a printhead receptacle that encloses a volume, a planar member configured to move between a first position at which the planar member is located within the printhead receptacle and a second position at which the planar member is external of the printhead receptacle, a first actuator operatively connected to the planar member, the first actuator being configured to move the planar member from the first position to the second position, and a controller configured to operate the first actuator to move the planar member from the first position to the second position to mate the planar member with a face of a printhead.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: March 2, 2021
    Assignee: Xerox Corporation
    Inventors: David A. VanKouwenberg, Linn C. Hoover, Michael J. Levy, Jason M. LeFevre, Chu-heng Liu, Paul J. McConville, Douglas K. Herrmann, Seemit Praharaj
  • Publication number: 20210053784
    Abstract: Alignment apparatuses include a frame and contact elements connected to the frame. The contact elements contact items that are to be transported in a processing direction relative to the frame. The contact elements are in permeant fixed positions relative to the frame, and do not move relative to the frame. Adjustable mounts are connected to the frame and move the frame in the processing direction and in a perpendicular cross-processing direction. A controller is electrically connected to the adjustable mounts, and the controller is adapted to control the adjustable mounts to simultaneously move the frame and all the contact elements in the cross-processing direction and the processing direction while rotating the frame. Methods laterally shift imaging on sheets that have had rotational correction performed by such alignment apparatuses.
    Type: Application
    Filed: November 10, 2020
    Publication date: February 25, 2021
    Applicant: Xerox Corporation
    Inventors: Matthew L. Gesner, Kenneth E. VanDeWater, Husein Naser Kasim Rashed, Jason M. LeFevre, Douglas K. Herrmann, Paul J. McConville, Chu-heng Liu, Seemit Praharaj