Patents by Inventor Sefa Demirtas

Sefa Demirtas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961257
    Abstract: An image processing system having on-the-fly calibration uses the placement of the imaging sensor and the light source for calibration. The placement of the imaging sensor and light source with respect to each other affect the amount of signal received by a pixel as a function of distance to a selected object. For example, an obstruction can block the light emitter, and as the obstruction is positioned an increasing distance away from the light emitter, the signal level increases as light rays leave the light emitters, bounce off the obstruction and are received by the imaging sensor. The system includes a light source configured to emit light, and an image sensor to collect incoming signals including reflected light, and a processor to determine a distance measurement at each of the pixels and calibrate the system.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: April 16, 2024
    Assignee: Analog Devices, Inc.
    Inventors: Charles Mathy, Brian C. Donnelly, Nicolas Le Dortz, Sefa Demirtas
  • Publication number: 20230367017
    Abstract: A sensor system that obtains and processes time-of-flight data (TOF) obtained in an arbitrary orientation is provided. A TOF sensor obtains distance data describing various surfaces. A processor identifies a horizontal Z-plane in the environment, and transforms the data to align with the Z-plane. In some embodiments, the environment includes a box, and the processor identifies a bottom and a top of the box in the transformed data. The processor can further determine dimensions of the box, e.g., the height between the top and bottom of the box, and the length and width of the box top.
    Type: Application
    Filed: September 21, 2021
    Publication date: November 16, 2023
    Inventors: Peter CHO, Thomas AJAMIAN, Jason D. KING, Charles MATHY, Sefa DEMIRTAS
  • Publication number: 20230228883
    Abstract: A sensor system that obtains and processes time-of-flight data (TOF) is provided. A TOF sensor obtains raw data describing various surfaces. A processor applies an averaging filter to the raw data to smooth the raw data for increasing signal-to-noise ratio (SNR) of flat surfaces represented in the raw data, performs a depth compute process on the raw data, as filtered, to generate distance data, generates a point cloud based on the distance data, and identifies the Z-planes in the point cloud.
    Type: Application
    Filed: March 22, 2023
    Publication date: July 20, 2023
    Inventors: Charles MATHY, Peter Cho, Sefa Demirtas
  • Publication number: 20230055829
    Abstract: An image processing system having on-the-fly calibration uses the placement of the imaging sensor and the light source for calibration. The placement of the imaging sensor and light source with respect to each other affect the amount of signal received by a pixel as a function of distance to a selected object. For example, an obstruction can block the light emitter, and as the obstruction is positioned an increasing distance away from the light emitter, the signal level increases as light rays leave the light emitters, bounce off the obstruction and are received by the imaging sensor. The system includes a light source configured to emit light, and an image sensor to collect incoming signals including reflected light, and a processor to determine a distance measurement at each of the pixels and calibrate the system.
    Type: Application
    Filed: August 22, 2022
    Publication date: February 23, 2023
    Applicant: Analog Devices, Inc.
    Inventors: Charles MATHY, Brian C. DONNELLY, Nicolas LE DORTZ, Sefa DEMIRTAS
  • Patent number: 11423572
    Abstract: An image processing system having on-the-fly calibration uses the placement of the imaging sensor and the light source for calibration. The placement of the imaging sensor and light source with respect to each other affect the amount of signal received by a pixel as a function of distance to a selected object. For example, an obstruction can block the light emitter, and as the obstruction is positioned an increasing distance away from the light emitter, the signal level increases as light rays leave the light emitters, bounce off the obstruction and are received by the imaging sensor. The system includes a light source configured to emit light, and an image sensor to collect incoming signals including reflected light, and a processor to determine a distance measurement at each of the pixels and calibrate the system.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: August 23, 2022
    Assignee: ANALOG DEVICES, INC.
    Inventors: Charles Mathy, Brian C. Donnelly, Nicolas Le Dortz, Sefa Demirtas
  • Patent number: 11092678
    Abstract: Depth imagers can implement time-of-flight operations to measure depth or distance of objects. A depth imager can emit light onto a scene and sense light reflected back from the objects in the scene using an array of sensors. Timing of the reflected light hitting the array of sensors gives information about the depth or distance of objects in the scene. In some cases, corrupting light that is outside of a field of view of a pixel in the array of sensors can hit the pixel due to internal scattering or internal reflections occurring in the depth imager. The corrupting light can corrupt the depth or distance measurement. To address this problem, an improved depth imager can isolate and measure the corrupting light due to internal scattering or internal reflections occurring in the depth imager, and systematically remove the measured corrupting light from the depth or distance measurement.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: August 17, 2021
    Assignee: ANALOG DEVICES, INC.
    Inventors: Erik D. Barnes, Charles Mathy, Sefa Demirtas
  • Patent number: 10841491
    Abstract: Aspects of the embodiments are directed to passive depth determination. Initially, a high power depth map of a scene can be created. An object in the scene can be identified, such as a rigid body or other object or portion of an object. A series of lower power or RGB images can be captured. The object can be located in one or more of the lower power or RGB images. A change in the position of an object, represented by a set of pixels, can be determined. From the change in position of the object, a new depth of the object can be extrapolated. The extrapolated depth of the object can be used to update the high power depth map.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: November 17, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Charles Mathy, Sefa Demirtas, Bin Huo, Dhruvesh Gajaria, Jonathan Ari Goldberg, Nicolas Le Dortz, Tao Yu, James Noraky
  • Publication number: 20200256999
    Abstract: A Laser Imaging Detection and Ranging (LIDAR) system comprises a memory configured to store LIDAR measurement data obtained by the LIDAR system representative of a three-dimensional (3D) space in a field of view of the LIDAR system and signal processing circuitry. The signal processing circuitry is and configured to convert the LIDAR measurement data to a voxel characteristic of voxels of the 3D space, process and adjust a voxel characteristic of a first voxel of the 3D space using a voxel characteristic of other voxels within a specified distance of the first voxel in the 3D space, continue to process and adjust the voxel characteristics of all voxels in the 3D space, and generate an indication of presence of an object in the field of view according to the adjusted voxel characteristics.
    Type: Application
    Filed: February 6, 2020
    Publication date: August 13, 2020
    Inventors: Atulya Yellepeddi, Ravi Kiran Raman, Jennifer Tang, Sefa Demirtas, Miles R. Bennett, Christopher Barber
  • Patent number: 10712369
    Abstract: Embodiments of the present disclosure provide mechanisms for measuring currents flowing in one or more conductor wires. The mechanisms are based on using magnetic sensor pairs arranged within a housing with an opening for the wires, where each magnetic sensor pair can generate a pair of signals indicative of magnetic fields in two different directions. The outputs of the sensor pairs can be used to derive a measure of current(s) flowing through the one or more wires. The use of magnetic sensor pairs that can measure magnetic field in two different directions may enable simultaneous current measurement in multiple wires placed within the opening, improve accuracy of current measurements while relaxing requirements for precise control of the placement of the wire(s), reduce the impact of stray magnetic interference, and enable both AC and DC measurements.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: July 14, 2020
    Assignee: ANALOG DEVICES GLOBAL UNLIMTED COMPANY
    Inventors: Boris Lerner, Yogesh Jayaraman Sharma, Sefa Demirtas, Jochen Schmitt, Paul Blanchard, Arthur J. Kalb, Harvey Weinberg, Jonathan Ephraim David Hurwitz
  • Publication number: 20200193640
    Abstract: An image processing system having on-the-fly calibration uses the placement of the imaging sensor and the light source for calibration. The placement of the imaging sensor and light source with respect to each other affect the amount of signal received by a pixel as a function of distance to a selected object. For example, an obstruction can block the light emitter, and as the obstruction is positioned an increasing distance away from the light emitter, the signal level increases as light rays leave the light emitters, bounce off the obstruction and are received by the imaging sensor. The system includes a light source configured to emit light, and an image sensor to collect incoming signals including reflected light, and a processor to determine a distance measurement at each of the pixels and calibrate the system.
    Type: Application
    Filed: October 25, 2019
    Publication date: June 18, 2020
    Applicant: Analog Devices, Inc.
    Inventors: Charles MATHY, Brian C. DONNELLY, Nicolas LE DORTZ, Sefa DEMIRTAS
  • Patent number: 10627494
    Abstract: Aspects of the embodiments are directed to methods and imaging systems. The imaging systems can be configured to sense, by an light sensor of the imaging system, light received during a time period, process the light received by the light sensor, identify an available measurement period for the imaging system within the time period based on the processed light, and transmit and receive light during a corresponding measurement period in one or more subsequent time periods.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: April 21, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Sefa Demirtas, Tao Yu, Atulya Yellepeddi, Nicolas Le Dortz
  • Publication number: 20190391238
    Abstract: Depth imagers can implement time-of-flight operations to measure depth or distance of objects. A depth imager can emit light onto a scene and sense light reflected back from the objects in the scene using an array of sensors. Timing of the reflected light hitting the array of sensors gives information about the depth or distance of objects in the scene. In some cases, corrupting light that is outside of a field of view of a pixel in the array of sensors can hit the pixel due to internal scattering or internal reflections occurring in the depth imager. The corrupting light can corrupt the depth or distance measurement. To address this problem, an improved depth imager can isolate and measure the corrupting light due to internal scattering or internal reflections occurring in the depth imager, and systematically remove the measured corrupting light from the depth or distance measurement.
    Type: Application
    Filed: April 17, 2019
    Publication date: December 26, 2019
    Applicant: Analog Devices, Inc.
    Inventors: Erik D. BARNES, Charles MATHY, Sefa DEMIRTAS
  • Patent number: 10451713
    Abstract: Aspects of the embodiments are directed to methods and imaging systems. The imaging systems can be configured to sense, by an light sensor of the imaging system, light received during a time period, process the light received by the light sensor, identify an available measurement period for the imaging system within the time period based on the processed light, and transmit and receive light during a corresponding measurement period in one or more subsequent time periods.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: October 22, 2019
    Assignee: ANALOG DEVICES, INC.
    Inventors: Sefa Demirtas, Tao Yu, Atulya Yellepeddi, Nicolas Le Dortz, Charles Mathy
  • Publication number: 20190293689
    Abstract: Embodiments of the present disclosure provide mechanisms for measuring currents flowing in one or more conductor wires. The mechanisms are based on using magnetic sensor pairs arranged within a housing with an opening for the wires, where each magnetic sensor pair can generate a pair of signals indicative of magnetic fields in two different directions. The outputs of the sensor pairs can be used to derive a measure of current(s) flowing through the one or more wires. The use of magnetic sensor pairs that can measure magnetic field in two different directions may enable simultaneous current measurement in multiple wires placed within the opening, improve accuracy of current measurements while relaxing requirements for precise control of the placement of the wire(s), reduce the impact of stray magnetic interference, and enable both AC and DC measurements.
    Type: Application
    Filed: June 8, 2018
    Publication date: September 26, 2019
    Applicant: Analog Devices Global Unlimited Company
    Inventors: Boris Lerner, Yogesh Jayaraman Sharma, Sefa Demirtas, Jochen Schmitt, Paul Blanchard, Arthur J. Kalb, Harvey Weinberg, Jonathan Ephraim David Hurwitz
  • Patent number: 10285651
    Abstract: Activity monitors and smart watches utilizing optical measurements are becoming widely popular, and users expect to get an increasingly accurate estimate of their heart rate (HR) from these devices. These devices are equipped with a light source and an optical sensor which enable estimation of HR using a technique called photoplethysmography (PPG). One of the main challenges of HR estimation using PPG is the coupling of motion into the optical PPG signal when the user is moving randomly or exercising. The present disclosure describes a computationally feasible and fast HR estimation algorithm to be executed at instances of little or no motion. Resulting HR readings may be useful on their own, or be provided to systems that monitor HR continuously to prevent the problem of such systems being locked on an incorrect HR for long periods of time. Implementing techniques described herein leads to more accurate HR measurements.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: May 14, 2019
    Assignee: ANALOG DEVICES, INC.
    Inventors: Sefa Demirtas, Jason D. King, Robert Adams, Tony Joseph Akl, Jeffrey G. Bernstein
  • Patent number: 10044386
    Abstract: Embodiments of the present disclosure provide mechanisms that enable designing an FIR filter that would have a guaranteed globally optimal magnitude response in terms of the minimax optimality criterion given a desired weight on the error in the stopband versus the passband. Design of such a filter is based on a theorem (“characterization theorem”) that provides an approach for characterizing the global minimax optimality of a given FIR filter h[n], n=0, 1, . . . , N, where optimality is evaluated with respect to a magnitude response of this filter, |H(ej?)|, as compared to the desired filter response, D(?), which is unity in the passband and zero in the stopband. The characterization theorem enables characterizing optimality for both real-valued and complex-valued filter coefficients, and does not require any symmetry in the coefficients, thus being applicable to all non-linear phase FIR filters.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: August 7, 2018
    Assignee: ANALOG DEVICES, INC.
    Inventor: Sefa Demirtas
  • Patent number: 9943266
    Abstract: Heart rate monitors are plagued by noisy photoplethysmography (PPG) data, which makes it difficult for the monitors to output a consistently accurate heart rate reading. Noise is often caused by motion. Using known methods for processing accelerometer readings that measure movement to filter out some of this noise may help, but not always. The present disclosure describes an improved front-end technique (time-domain interference removal) based on using adaptive linear prediction on accelerometer data to generate filters for filtering the PPG signal prior to tracking the frequency of the heartbeat (heart rate). The present disclosure also describes an improved back-end technique based on steering the frequency of a resonant filter in order to track the heartbeat. Implementing one or both of these techniques leads to more accurate heart rate measurements.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: April 17, 2018
    Assignee: ANALOG DEVICES, INC.
    Inventors: Robert Adams, Sefa Demirtas, Jeffrey G. Bernstein
  • Publication number: 20180081033
    Abstract: Aspects of the embodiments are directed to methods and imaging systems. The imaging systems can be configured to sense, by an light sensor of the imaging system, light received during a time period, process the light received by the light sensor, identify an available measurement period for the imaging system within the time period based on the processed light, and transmit and receive light during a corresponding measurement period in one or more subsequent time periods.
    Type: Application
    Filed: September 14, 2017
    Publication date: March 22, 2018
    Applicant: Analog Devices, Inc.
    Inventors: Sefa DEMIRTAS, Tao YU, Atulya YELLEPEDDI, Nicolas LE DORTZ, Charles MATHY
  • Publication number: 20180081043
    Abstract: Aspects of the embodiments are directed to methods and imaging systems. The imaging systems can be configured to sense, by an light sensor of the imaging system, light received during a time period, process the light received by the light sensor, identify an available measurement period for the imaging system within the time period based on the processed light, and transmit and receive light during a corresponding measurement period in one or more subsequent time periods.
    Type: Application
    Filed: September 14, 2017
    Publication date: March 22, 2018
    Applicant: Analog Devices, Inc.
    Inventors: Sefa DEMIRTAS, Tao YU, Atulya YELLEPEDDI, Nicolas LE DORTZ
  • Patent number: 9901306
    Abstract: Heart rate monitors are plagued by noisy photoplethysmography (PPG) data, which makes it difficult for the monitors to output a consistently accurate heart rate reading. Noise is often caused by motion. Using known methods for processing accelerometer readings that measure movement to filter out some of this noise may help, but not always. The present disclosure describes an improved front-end technique (time-domain interference removal) based on using adaptive linear prediction on accelerometer data to generate filters for filtering the PPG signal prior to tracking the frequency of the heartbeat (heart rate). The present disclosure also describes an improved back-end technique based on steering the frequency of a resonant filter in order to track the heartbeat. Implementing one or both of these techniques leads to more accurate heart rate measurements.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: February 27, 2018
    Assignee: ANALOG DEVICES, INC.
    Inventors: Robert Adams, Sefa Demirtas, Jeffrey G. Bernstein