Patents by Inventor Seiichi Morimoto

Seiichi Morimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240079238
    Abstract: A bonded object production method according to an embodiment uses a continuous furnace to process a stacked body including a metal member, a ceramic member, and a brazing material layer located therebetween, while conveying the stacked body; and the method includes a process of heating the stacked body in an inert atmosphere from 200° C. to a bonding temperature at an average temperature raising rate of the stacked body of not less than 15° C./min, a process of bonding the stacked body in an inert atmosphere at the bonding temperature that is within a range of not less than 600° C. and not more than 950° C., and a process of cooling the stacked body from the bonding temperature to 200° C. at an average temperature lowering rate of the stacked body of not less than 15° C./min. A ceramic substrate is favorably a silicon nitride substrate.
    Type: Application
    Filed: November 14, 2023
    Publication date: March 7, 2024
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Hiromasa KATO, Masanori HOSHINO, Hideaki HIRABAYASHI, Seiichi SUENAGA, Kazumitsu MORIMOTO
  • Patent number: 11466987
    Abstract: The present invention reduces measurement time. A gyroscope of the present invention includes a planar ion trap part, a microwave irradiation part, a laser irradiation part and a measurement part. The planar ion trap part includes two rf electrodes and two DC electrode rows, and forms ion traps that trap one ion on a substrate, a normal direction of the surface of the planar ion trap part corresponds to a z direction. The rf electrodes are disposed in the x direction on the substrate at a predetermined interval. The DC electrode rows are disposed in the x direction on the substrate so as to sandwich the two rf electrodes. The DC electrode rows each include at least five DC electrodes in the x direction. The trapped ions are spaced so as not to interfere with each other. The microwave irradiation part irradiates the ions with ?/2 microwave pulses.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: October 11, 2022
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, OSAKA UNIVERSITY, JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED, MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Mikio Kozuma, Ryotaro Inoue, Takashi Mukaiyama, Utako Tanaka, Seiichi Morimoto, Kazunori Yoshioka, Atsushi Tanaka, Yuichiro Kamino
  • Patent number: 10968339
    Abstract: Antioxidant-containing expandable resin particles including composite resin particles containing 100 to 400 parts by mass of polystyrene-based resin relative to 100 parts by mass of polypropylene-based resin, and a blowing agent and an antioxidant contained in the composite resin particles, wherein the polypropylene-based resin is abundantly present on the surface of the composite resin particles and poorly present at the center of the particles, and the composite resin particles contain 150 to 1500 ppm of antioxidant.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: April 6, 2021
    Assignee: SEKISUI PLASTICS CO., LTD.
    Inventor: Seiichi Morimoto
  • Publication number: 20200333139
    Abstract: A gyroscope of the present invention includes a moving standing light wave generator to generate three moving standing light waves, an atomic beam source to continuously generate an atomic beam in which individual atoms are in the same state, an interference device that exerts a Sagnac effect through interaction between the atomic beam and the three moving standing light waves and a monitor to detect angular velocity or acceleration by monitoring an atomic beam from the interference device. The atoms are alkaline earth metal atoms, alkaline earth-like metal atoms, stable isotopes of alkaline earth metal atoms or stable isotopes of alkaline earth-like metal atoms.
    Type: Application
    Filed: July 25, 2018
    Publication date: October 22, 2020
    Applicants: TOKYO INSTITUTE OF TECHNOLOGY, OSAKA UNIVERSITY, JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED, MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Mikio KOZUMA, Ryotaro INOUE, Takashi MUKAIYAMA, Seiichi MORIMOTO, Kazunori YOSHIOKA, Atsushi TANAKA, Yuichiro KAMINO
  • Publication number: 20200318968
    Abstract: A gyroscope of the present invention includes a moving standing light wave generator to generate three moving standing light waves, an atomic beam source to continuously generate an atomic beam in which individual atoms are in the same state, an interference device that exerts a Sagnac effect through interaction between the atomic beam and the three moving standing light waves, and a monitor to detect angular velocity or acceleration by monitoring an atomic beam from the interference device. Each moving standing light wave satisfies an n-th order Bragg condition, where n is a positive integer of 2 or more.
    Type: Application
    Filed: July 25, 2018
    Publication date: October 8, 2020
    Applicants: TOKYO INSTITUTE OF TECHNOLOGY, OSAKA UNIVERSITY, JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED, MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Mikio KOZUMA, Ryotaro INOUE, Takashi MUKAIYAMA, Seiichi MORIMOTO, Kazunori YOSHIOKA, Atsushi TANAKA, Yuichiro KAMINO
  • Publication number: 20200300630
    Abstract: The present invention reduces measurement time. A gyroscope of the present invention includes a planar ion trap part, a microwave irradiation part, a laser irradiation part and a measurement part. The planar ion trap part includes two rf electrodes and two DC electrode rows, and forms ion traps that trap one ion on a substrate, a normal direction of the surface of the planar ion trap part corresponds to a z direction. The rf electrodes are disposed in the x direction on the substrate at a predetermined interval. The DC electrode rows are disposed in the x direction on the substrate so as to sandwich the two rf electrodes. The DC electrode rows each include at least five DC electrodes in the x direction. The trapped ions are spaced so as not to interfere with each other. The microwave irradiation part irradiates the ions with ?/2 microwave pulses.
    Type: Application
    Filed: July 25, 2018
    Publication date: September 24, 2020
    Applicants: TOKYO INSTITUTE OF TECHNOLOGY, OSAKA UNIVERSITY, JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED, MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Mikio KOZUMA, Ryotaro INOUE, Takashi MUKAIYAMA, Utako TANAKA, Seiichi MORIMOTO, Kazunori YOSHIOKA, Atsushi TANAKA, Yuichiro KAMINO
  • Publication number: 20200256677
    Abstract: A gyroscope includes an atomic beam source to generate an atomic beam in which individual atoms are in the same state, a moving standing light wave generator to generate M moving standing light waves, an interference device to obtain an atomic beam resulting from the interaction between the atomic beam and the M moving standing light waves, a monitor to detect angular velocity by monitoring the atomic beam from the interference device and an accelerometer. The accelerometer acquires information on acceleration applied to the gyroscope and the moving standing light wave generator adjusts the drift velocity of at least M?1 moving standing light waves among the M moving standing light waves in response to the acceleration information.
    Type: Application
    Filed: July 25, 2018
    Publication date: August 13, 2020
    Applicants: TOKYO INSTITUTE OF TECHNOLOGY, OSAKA UNIVERSITY, JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED, MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Mikio KOZUMA, Ryotaro INOUE, Takashi MUKAIYAMA, Seiichi MORIMOTO, Kazunori YOSHIOKA, Atsushi TANAKA, Yuichiro KAMINO
  • Publication number: 20190085160
    Abstract: Antioxidant-containing expandable resin particles including composite resin particles containing 100 to 400 parts by mass of polystyrene-based resin relative to 100 parts by mass of polypropylene-based resin, and a blowing agent and an antioxidant contained in the composite resin particles, wherein the polypropylene-based resin is abundantly present on the surface of the composite resin particles and poorly present at the center of the particles, and the composite resin particles contain 150 to 1500 ppm of antioxidant.
    Type: Application
    Filed: September 27, 2016
    Publication date: March 21, 2019
    Applicant: SEKISUI PLASTICS CO., LTD.
    Inventor: Seiichi MORIMOTO
  • Patent number: 8334184
    Abstract: Techniques are disclosed for fabricating FinFET transistors (e.g., double-gate, trigate, etc). A sacrificial gate material (such as polysilicon or other suitable material) is deposited on fin structure, and polished to remove topography in the sacrificial gate material layer prior to gate patterning. A flat, topography-free surface (e.g., flatness of 50 nm or better, depending on size of minimum feature being formed) enables subsequent gate patterning and sacrificial gate material opening (via polishing) in a FinFET process flow. Use of the techniques described herein may manifest in structural ways. For instance, a top gate surface is relatively flat (e.g., flatness of 5 to 50 nm, depending on minimum gate height or other minimum feature size) as the gate travels over the fin. Also, a top down inspection of gate lines will generally show no or minimal line edge deviation or perturbation as the line runs over a fin.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: December 18, 2012
    Assignee: Intel Corporation
    Inventors: Joseph M. Steigerwald, Uday Shah, Seiichi Morimoto, Nancy Zelick
  • Publication number: 20110147812
    Abstract: Techniques are disclosed for fabricating FinFET transistors (e.g., double-gate, trigate, etc). A sacrificial gate material (such as polysilicon or other suitable material) is deposited on fin structure, and polished to remove topography in the sacrificial gate material layer prior to gate patterning. A flat, topography-free surface (e.g., flatness of 50 nm or better, depending on size of minimum feature being formed) enables subsequent gate patterning and sacrificial gate material opening (via polishing) in a FinFET process flow. Use of the techniques described herein may manifest in structural ways. For instance, a top gate surface is relatively flat (e.g., flatness of 5 to 50 nm, depending on minimum gate height or other minimum feature size) as the gate travels over the fin. Also, a top down inspection of gate lines will generally show no or minimal line edge deviation or perturbation as the line runs over a fin.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Joseph M. Steigerwald, Uday Shah, Seiichi Morimoto, Nancy Zelick
  • Patent number: 7405419
    Abstract: A method of forming and a device including an interconnect structure having a unidirectional electrical conductive material is described. The unidirectional conductive material may overlie interconnect materials, and/or may surround interconnect materials, such as by lining the walls and base of a trench and via. The unidirectional conductive material may be configured to conduct electricity in a direction corresponding to a projection to or from a contact point and conductive material overlying the unidirectional conductive material, but have no substantial electrical conductivity in other directions. Moreover, the unidirectional conductive material may be electrically conductive in a direction normal to a surface over which it is formed or in directions along or across a plane, but have no substantial electrical conductivity in other directions.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: July 29, 2008
    Assignee: Intel Corporation
    Inventors: Reza M. Golzarian, Robert P. Meagley, Seiichi Morimoto, Mansour Moinpour
  • Publication number: 20060228884
    Abstract: A method of forming and a device including an interconnect structure having a unidirectional electrical conductive material is described. The unidirectional conductive material may overlie interconnect materials, and/or may surround interconnect materials, such as by lining the walls and base of a trench and via. The unidirectional conductive material may be configured to conduct electricity in a direction corresponding to a projection to or from a contact point and conductive material overlying the unidirectional conductive material, but have no substantial electrical conductivity in other directions. Moreover, the unidirectional conductive material may be electrically conductive in a direction normal to a surface over which it is formed or in directions along or across a plane, but have no substantial electrical conductivity in other directions.
    Type: Application
    Filed: December 28, 2005
    Publication date: October 12, 2006
    Inventors: Reza Golzarian, Robert Meagley, Seiichi Morimoto, Mansour Moinpour
  • Patent number: 7084053
    Abstract: A method of forming and a device including an interconnect structure having a unidirectional electrical conductive material is described. The unidirectional conductive material may overlie interconnect materials, and/or may surround interconnect materials, such as by lining the walls and base of a trench and via. The unidirectional conductive material may be configured to conduct electricity in a direction corresponding to a projection to or from a contact point and conductive material overlying the unidirectional conductive material, but have no substantial electrical conductivity in other directions. Moreover, the unidirectional conductive material may be electrically conductive in a direction normal to a surface over which it is formed or in directions along or across a plane, but have no substantial electrical conductivity in other directions.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: August 1, 2006
    Assignee: Intel Corporation
    Inventors: Reza M. Golzarian, Robert P. Meagley, Seiichi Morimoto, Mansour Moinpour
  • Publication number: 20050070096
    Abstract: A method of forming and a device including an interconnect structure having a unidirectional electrical conductive material is described. The unidirectional conductive material may overlie interconnect materials, and/or may surround interconnect materials, such as by lining the walls and base of a trench and via. The unidirectional conductive material may be configured to conduct electricity in a direction corresponding to a projection to or from a contact point and conductive material overlying the unidirectional conductive material, but have no substantial electrical conductivity in other directions. Moreover, the unidirectional conductive material may be electrically conductive in a direction normal to a surface over which it is formed or in directions along or across a plane, but have no substantial electrical conductivity in other directions.
    Type: Application
    Filed: September 30, 2003
    Publication date: March 31, 2005
    Inventors: Reza Golzarian, Robert Meagley, Seiichi Morimoto, Mansour Moinpour
  • Patent number: 6081272
    Abstract: A method for optimally sizing dummy structures in an integrated circuit design is disclosed. Adjacent dummy structures are merged to provide a composite merged dummy structure. Each side of a first dummy structure representation is expanded in a lateral direction by a predetermined distance such that the first dummy structure representation merges with an adjacent second dummy structure representation forming the composite merged dummy structure. The composite merged dummy structure is then examined to determine if it exceeds a predetermined size. If the composite merged dummy structure exceeds the predetermined size, then the composite merged dummy structure is contracted to fit within predetermined perimeters.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: June 27, 2000
    Assignee: Intel Corporation
    Inventors: Seiichi Morimoto, Timothy L. Deeter
  • Patent number: 5911111
    Abstract: A polishing process for polysilicon gate patterning improvement using standard patterning techniques in the manufacture of high performance metal oxide semiconductor (MOS) devices. The addition of a short silicon polish step, after deposition and before patterning of a polysilicon layer reduces the non-planarity normally associated with polysilicon. Polysilicon polishing removes the surface roughness in the polysilicon layer caused by the grain structure of polysilicon and the surface roughness due to the replication of the underlying topography of the isolation and substrate regions. The described method for removal of both types of surface roughness leaves the polysilicon layer planarized without increasing the defect level already associated with the manufacture of high performance MOS devices.
    Type: Grant
    Filed: September 2, 1997
    Date of Patent: June 8, 1999
    Assignee: Intel Corporation
    Inventors: Mark T. Bohr, Lawrence N. Brigham, Peter K. Moon, Seiichi Morimoto
  • Patent number: 5672095
    Abstract: A method and apparatus for polishing a film formed over a semiconductor substrate. The substrate is pressed up against an abrasive pad so that the film contacts the pad. The pad has a diameter which is less than approximately two times a diameter of the substrate. While pressure is applied to the back of the substrate, the pad is rotated with respect to the wafer and an abrasive ceria slurry is introduced onto the pad to polish the film.
    Type: Grant
    Filed: September 29, 1995
    Date of Patent: September 30, 1997
    Assignee: Intel Corporation
    Inventors: Seiichi Morimoto, Ebrahim Andideh
  • Patent number: 5198732
    Abstract: A control system for a progressive wave type ultrasonic motor including an ultrasonic motor driver circuit which supplies driving electric power to an ultrasonic motor and a rotary encoder which is coupled with an output shaft of the ultrasonic motor and generates a pulse signal in accordance with rotation of the ultrasonic motor, comprising a reference clock signal generator which generates a clock signal and a phase locked loop circuit which transmits a control signal to an ultrasonic motor driver circuit based on the clock signal and the pulse signal from the rotary encoder, and controlling the speed of the ultrasonic motor; and a control apparatus, comprising a driving control means which transmits a driving signal to an ultrasonic motor driver in accordance with a command pulse instructing to start driving of the ultrasonic motor and transmits a suspension signal to the ultrasonic motor driver in accordance with the pulse signal from the rotary encoder, and driving the ultrasonic motor intermittently.
    Type: Grant
    Filed: August 27, 1991
    Date of Patent: March 30, 1993
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventor: Seiichi Morimoto
  • Patent number: 5127196
    Abstract: An improved method for planarizing the surface of an dielectric deposited over a semiconductor substrate. The substrate is pressed face down against a table which has been coated with an abrasive material. In this way, the upper surface of the interlayer dielectric contacts the abrasive. Rotational movement of the wafer relative to the table facilitates removal of the protruding portions of the interlayer dielectric by the abrasive. Post-planarization step height variation is minimized by simultaneously cooling the table and the abrasive material during the abrasive or polishing process. By maintaining the table and the abrasive at about 10 degrees Celcius the step height variation is reduced by a factor of 2 over that normally realized in the prior art.
    Type: Grant
    Filed: February 20, 1991
    Date of Patent: July 7, 1992
    Assignee: Intel Corporation
    Inventors: Seiichi Morimoto, Robert J. Patterson
  • Patent number: 5104828
    Abstract: An improved method for planarizing the surface of an dielectric deposited over a semiconductor substrate. The substrate is pressed face down against a table which has been coated with an abrasive material. In this way, the upper surface of the interlayer dielectric contacts the abrasive. Rotational movement of the wafer relative to the table facilitates removal of the protruding portions of the interlayer dielectric by the abrasive. Post-planarization step height variation is minimized by simultaneously cooling the table and the abrasive material during the abrasive or polishing process. By maintaining the table and the abrasive at about 10 degrees Celsius the step height variation is reduced by a factor of 2 over that normally realized in the prior art.
    Type: Grant
    Filed: March 1, 1990
    Date of Patent: April 14, 1992
    Assignee: Intel Corporation
    Inventors: Seiichi Morimoto, Robert J. Patterson