Patents by Inventor Sekharipuram R. Narayanan

Sekharipuram R. Narayanan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140255807
    Abstract: A fuel cell system running on direct neat methanol. Back diffusion of water from the cathode to the anode is sufficiently high so that water is not accumulated at the cathode, thereby leading to fuel cell systems without the need for a pump system to remove circulate water from the cathode to the anode. Other embodiments are described and claimed.
    Type: Application
    Filed: May 20, 2014
    Publication date: September 11, 2014
    Applicant: California Institute of Technology
    Inventors: Sekharipuram R. Narayanan, Andrew Kindler, Thomas I. Valdez
  • Patent number: 8183174
    Abstract: A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: May 22, 2012
    Assignee: California Institute of Technology
    Inventors: Thomas I. Valdez, Sekharipuram R. Narayanan
  • Publication number: 20100089745
    Abstract: A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.
    Type: Application
    Filed: October 15, 2009
    Publication date: April 15, 2010
    Inventors: Thomas I. Valdez, Sekharipuram R. Narayanan
  • Patent number: 7695849
    Abstract: A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: April 13, 2010
    Assignee: California Institute of Technology
    Inventors: Sekharipuram R. Narayanan, Jay F. Whitacre
  • Publication number: 20100035123
    Abstract: A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.
    Type: Application
    Filed: February 17, 2005
    Publication date: February 11, 2010
    Inventors: Sekharipuram R. Narayanan, Jay F. Whitacre
  • Patent number: 7585577
    Abstract: A monopolar fuel cell stack comprises a plurality of sealed unit cells coupled together. Each unit cell comprises two outer cathodes adjacent to corresponding membrane electrode assemblies and a center anode plate. An inlet and outlet manifold are coupled to the anode plate and communicate with a channel therein. Fuel flows from the inlet manifold through the channel in contact with the anode plate and flows out through the outlet manifold. The inlet and outlet manifolds are arranged to couple to the inlet and outlet manifolds respectively of an adjacent one of the plurality of unit cells to permit fuel flow in common into all of the inlet manifolds of the plurality of the unit cells when coupled together in a stack and out of all of the outlet manifolds of the plurality of unit cells when coupled together in a stack.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: September 8, 2009
    Assignee: California Institute of Technology
    Inventors: Sekharipuram R. Narayanan, Thomas I. Valdez
  • Publication number: 20090214905
    Abstract: A fuel cell system running on direct neat methanol. Back diffusion of water from the cathode to the anode is sufficiently high so that water is not accumulated at the cathode, thereby leading to fuel cell systems without the need for a pump system to remove circulate water from the cathode to the anode. Other embodiments are described and claimed.
    Type: Application
    Filed: January 8, 2008
    Publication date: August 27, 2009
    Applicant: California Institute of Technology
    Inventors: Sekharipuram R. Narayanan, Andrew Kindler, Thomas I. Valdez
  • Publication number: 20090075149
    Abstract: Improved solid acid electrolyte materials, methods of synthesizing such materials, and electrochemical devices incorporating such materials are provided. The stable electrolyte material comprises a solid acid capable undergoing rotational disorder of oxyanion groups and capable of extended operation at elevated temperatures, that is, solid acids having hydrogen bonded anion groups; a superprotonic, trigonal, tetragonal, or cubic, disordered phase; and capable of being operating at temperatures of ˜100° C. and higher.
    Type: Application
    Filed: October 27, 2008
    Publication date: March 19, 2009
    Inventors: Sossina M. Haile, Calum Chisholm, Ryan B. Merle, Dane A. Boysen, Sekharipuram R. Narayanan
  • Patent number: 7488548
    Abstract: Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: February 10, 2009
    Assignee: California Institute of Technology
    Inventors: Subbarao Surampudi, Harvey A. Frank, Sekharipuram R. Narayanan, William Chun, Barbara Jeffries-Nakamura, Andrew Kindler, Gerald Halpert
  • Patent number: 7470478
    Abstract: Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: December 30, 2008
    Assignee: California Institute of Technology
    Inventors: Subbarao Surampudi, Harvey A. Frank, Sekharipuram R. Narayanan, William Chun, Barbara Jeffries-Nakamura, Andrew Kindler, Gerald Halpert
  • Patent number: 7445859
    Abstract: A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion™. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon™-binder structure is immersed within a Nafion™/methanol bath to impregnate the electrode with Nafion™. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: November 4, 2008
    Assignee: California Institute of Technology
    Inventors: Eugene Vamos, Subbarao Surampudi, Sekharipuram R. Narayanan, Harvey A. Frank, Gerald Halpert, George A. Olah, G. K. Surya Prakash
  • Patent number: 7425384
    Abstract: Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: September 16, 2008
    Assignee: California Institute of Technology
    Inventors: Subbarao Surampudi, Harvey A. Frank, Sekharipuram R. Narayanan, William Chun, Barbara Jeffries-Nakamura, Andrew Kindler, Gerald Halpert
  • Patent number: 7416803
    Abstract: Improved solid acid electrolyte materials, methods of synthesizing such materials, and electrochemical devices incorporating such materials are provided. The stable electrolyte material comprises a solid acid capable undergoing rotational disorder of oxyanion groups and capable of extended operation at elevated temperatures, that is, solid acids having hydrogen bonded anion groups; a superprotonic, trigonal, tetragonal, or cubic, disordered phase; and capable of being operating at temperatures of ˜100° C. and higher.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: August 26, 2008
    Assignee: California Institute of Technology
    Inventors: Sossina M. Haile, Calum Chisholm, Ryan B. Merle, Dane A. Boysen, Sekharipuram R. Narayanan
  • Patent number: 7416809
    Abstract: An improved direct liquid-feed fuel cell having a solid membrane electrolyte for electrochemical reactions of an organic fuel. Improvements in interfacing of the catalyst layer and the membrane and activating catalyst materials are disclosed.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: August 26, 2008
    Assignee: California Institute of Technology
    Inventors: Sekharipuram R. Narayanan, Subbarao Surampudi
  • Patent number: 7282291
    Abstract: Disclosed are methods for forming a water-free electrolyte membrane useful in fuel cells. Also provided is a water-free electrolyte membrane comprising a quaternized amine salt including poly-4-vinylpyridinebisulfate, a poly-4-vinylpyridinebisulfate silica composite, and a combination thereof and a fuel cell comprising the membrane.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: October 16, 2007
    Assignee: California Institute of Technology
    Inventors: Sekharipuram R. Narayanan, Shiao-Pin S. Yen
  • Patent number: 7147958
    Abstract: A catalyst ink for a fuel cell including a catalytic material and poly(vinylidene fluoride). The ink may be applied to a substrate to form an electrode, or bonded with other electrode layers to form a membrane electrode assembly (MEA).
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: December 12, 2006
    Assignees: California Institute of Technology, University of Southern California
    Inventors: Surya Prakash, Sekharipuram R. Narayanan, Anthony Atti, George Olah, Marshall C. Smart
  • Patent number: 7125621
    Abstract: A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: October 24, 2006
    Assignee: California Institute of Technology
    Inventors: Sossina M. Haile, Calum Chisholm, Dane A. Boysen, Sekharipuram R. Narayanan
  • Patent number: 7108934
    Abstract: A “water free,” proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: September 19, 2006
    Assignee: California Instituite of Technology
    Inventors: Sekharipuram R. Narayanan, Shiao-Pin S. Yen
  • Patent number: 7056428
    Abstract: A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: June 6, 2006
    Assignee: California Institute of Technology
    Inventors: Sekharipuram R. Narayanan, William Chun, Barbara Jeffries-Nakamura, Thomas I. Valdez
  • Publication number: 20040234834
    Abstract: Disclosed are methods for forming a water-free electrolyte membrane useful in fuel cells. Also provided is a water-free electrolyte membrane comprising a quaternized amine salt including poly-4-vinylpyridinebisulfate, a poly-4-vinylpyridinebisulfate silica composite, and a combination thereof and a fuel cell comprising the membrane.
    Type: Application
    Filed: November 24, 2003
    Publication date: November 25, 2004
    Inventors: Sekharipuram R. Narayanan, Shiao-Pin S. Yen