Patents by Inventor Sekyung Chang

Sekyung Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11827569
    Abstract: A process of synthesizing a yttrium aluminum garnet (YAG) powder. The process comprises introducing powders of yttria and silica to form a powder mixture, wherein alumina is not added to the powder mixture. Milling the powder mixture in the presence of an alumina grinding media and a solvent forms a powder slurry. Processing the powder slurry forms a green compact. Calcining the green compact at a temperature of from 1100° C. to 1650° C. for greater than 8 hours in air to 50% or less theoretical density forms a YAG compact of at least 92 wt % Y3Al5O12. Milling the YAG compact, without a grinding media, and drying produces the YAG powder. Processes further include introducing a dopant to the powder mixture to produce doped YAG powder.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: November 28, 2023
    Assignee: Materion Corporation
    Inventors: Sekyung Chang, Mario E. Cota, Robert E. Kusner, Fritz Grensing
  • Publication number: 20220242793
    Abstract: A process of synthesizing a yttrium aluminum garnet (YAG) powder. The process comprises introducing powders of yttria and silica to form a powder mixture, wherein alumina is not added to the powder mixture. Milling the powder mixture in the presence of an alumina grinding media and a solvent forms a powder slurry. Processing the powder slurry forms a green compact. Calcining the green compact at a temperature of from 1100° C. to 1650° C. for greater than 8 hours in air to 50% or less theoretical density forms a YAG compact of at least 92 wt % Y3Al5O12. Milling the YAG compact, without a grinding media, and drying produces the YAG powder. Processes further include introducing a dopant to the powder mixture to produce doped YAG powder.
    Type: Application
    Filed: January 28, 2022
    Publication date: August 4, 2022
    Applicant: MATERION CORPORATION
    Inventors: Sekyung CHANG, Mario E. COTA, Robert E. KUSNER, Fritz GRENSING
  • Patent number: 8865055
    Abstract: A freeze-forging method for producing sintered three-dimensional ceramic bodies, particularly magnesium aluminate spinel domes. The method comprises forming a ceramic mix of a ready-to-sinter ceramic powder and a nonaqueous liquefied sublimable vehicle having a solidification temperature from room temperature to below 200° C.; reducing the temperature of the ceramic mix to below the vehicle's solidification temperature to freeze the mix; crushing the frozen mix into powdered form; molding the frozen powder into net shape by cold forging in a mold to form a net-shaped green body preform of the desired three-dimensional shape; and densifying the green body into a sintered three-dimensional ceramic body.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: October 21, 2014
    Assignee: Materials and Electrochemical Research (MER) Corporation
    Inventors: Juan L. Sepulveda, Raouf O. Loutfy, Sekyung Chang, Ricardo Ramos, Sharly Ibrahim
  • Publication number: 20130106009
    Abstract: A freeze-forging method for producing sintered three-dimensional ceramic bodies, particularly magnesium aluminate spinel domes. The method comprises forming a ceramic mix of a ready-to-sinter ceramic powder and a nonaqueous liquefied sublimable vehicle having a solidification temperature from room temperature to below 200° C.; reducing the temperature of the ceramic mix to below the vehicle's solidification temperature to freeze the mix; crushing the frozen mix into powdered form; molding the frozen powder into net shape by cold forging in a mold to form a net-shaped green body preform of the desired three-dimensional shape; and densifying the green body into a sintered three-dimensional ceramic body.
    Type: Application
    Filed: February 17, 2012
    Publication date: May 2, 2013
    Inventors: Juan L. Sepulveda, Raouf O. Loutfy, Sekyung Chang, Ricardo Ramos, Sharly Ibrahim
  • Patent number: 8313725
    Abstract: An in-situ method for nanomixing magnesium aluminate spinel nanoparticles with a uniformly distributed controlled concentration of nanoparticles of an inorganic sintering aid, such as LiF, to produce ready-to-sinter spinel powder. The spinel-sintering aid nanomixture is formed by induced precipitation of the sintering aid nanoparticles from a dispersion of the spinel nanoparticles in an aqueous solution of the sintering aid, followed by separation, drying and deagglomeration of the spinel-sintering aid nanomixed product.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: November 20, 2012
    Assignee: Materials and Electrochemical Research (MER) Corporation
    Inventors: Raouf O. Loutfy, Juan L. Sepulveda, Sekyung Chang
  • Publication number: 20100144510
    Abstract: A freeze-forging method for producing sintered three-dimensional ceramic bodies, particularly magnesium aluminate spinel domes. The method comprises forming a ceramic mix of a ready-to-sinter ceramic powder and a nonaqueous liquefied sublimable vehicle having a solidification temperature from room temperature to below 200° C.; reducing the temperature of the ceramic mix to below the vehicle's solidification temperature to freeze the mix; crushing the frozen mix into powdered form; cold forging the frozen powder in a mold to form a solidified green body of the desired three-dimensional shape; and densifying the green body into a sintered three-dimensional ceramic body.
    Type: Application
    Filed: July 16, 2009
    Publication date: June 10, 2010
    Inventors: Juan L. Sepulveda, Raouf O. Loutfy, Sekyung Chang, Ricardo Ramos, Sharly Ibrahim
  • Publication number: 20100056357
    Abstract: An in-situ method for nanomixing magnesium aluminate spinel nanoparticles with a uniformly distributed controlled concentration of nanoparticles of an inorganic sintering aid, such as LiF, to produce ready-to-sinter spinel powder. The spinel-sintering aid nanomixture is formed by induced precipitation of the sintering aid nanoparticles from a dispersion of the spinel nanoparticles in an aqueous solution of the sintering aid, followed by separation, drying and deagglomeration of the spinel-sintering aid nanomixed product.
    Type: Application
    Filed: July 16, 2009
    Publication date: March 4, 2010
    Inventors: Raouf O. Loutfy, Juan L. Sepulveda, Sekyung Chang
  • Patent number: 6420293
    Abstract: A ceramic matrix nanocomposite having enhanced mechanical behavior is made up of a nanotube filler composed of at least one nanotube material, and a ceramic matrix composed of a nanocrystalline ceramic oxide. A method for producing ceramic articles having improved fracture toughness includes combining of a nanotube filler made up of a nanotube material and a ceramic matrix made up of a nanocrystalline ceramic oxide, forming an article therefrom, and sintering the article under elevated pressure at elevated temperature.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: July 16, 2002
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Sekyung Chang, Robert H. Doremus, Richard W. Siegel, Pulickel M. Ajayan