Patents by Inventor Sen Hu

Sen Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180326956
    Abstract: In one embodiment, it is determined that an ADV is about to decelerate based on perception of a driving environment surrounding the ADV. In addition, if there is another vehicle that is following the ADV, a distance between the ADV and the following vehicle, as well as the speed of the following vehicle, is determined. A deceleration rate that is required for the following vehicle to avoid a collision with the ADV is determined based on the distance between the ADV and the following vehicle and the speed of the following vehicle. If the deceleration rate is greater than a predetermined threshold, a brake light and an emergency light of the ADV are turned on to warn the following vehicle that the ADV is about to rapidly decelerate as it is treated as an emergency situation.
    Type: Application
    Filed: May 10, 2017
    Publication date: November 15, 2018
    Inventors: Fan ZHU, Qi KONG, Qi LUO, Xiang YU, Sen HU, Guang YANG, Jingao WANG
  • Publication number: 20180330173
    Abstract: When generating a control command of an autonomous driving vehicle (ADV), a pitch status and/or a roll status of the road is determined. The control command is adjusted based on the pitch status and the roll status. For example, when an ADV is driving on an uphill or downhill road, a pitch status of the road is determined and a speed control command will be generated based on the pitch status of the road, such that the ADV have a similar acceleration rate as of driving on a flat road. Similarly, when the ADV is driving on a road that is tilted or rolled left or right, a roll status of the road is determined and a steering control command will be generated in view of the roll status of the road, such that the ADV have a similar heading direction as of driving on a flat road.
    Type: Application
    Filed: May 15, 2017
    Publication date: November 15, 2018
    Inventors: Fan ZHU, Qi KONG, Qi LUO, Xiang YU, Sen HU, Li ZHUANG, Liangliang ZHANG, Weicheng ZHU, Haoyang FAN, Yajia ZHANG, Guang YANG, Jingao WANG
  • Patent number: 10118639
    Abstract: In one embodiment, an autonomous driving vehicle (ADV) steering control system determines how much and when to apply a steering control to maneuver obstacles of a planned route. The steering control system calculates a first steering angle based on a target directional angle and an actual directional angle of the ADV, a second steering angle based on a target lateral position and an actual lateral position of the ADV to maneuver a planned route, an object, or an obstacle course. The steering control system determines a target steering angle based on the first steering angle and the second steering angles and utilizes the target steering angle to control a subsequent steering angle of the ADV.
    Type: Grant
    Filed: November 24, 2016
    Date of Patent: November 6, 2018
    Assignee: BAIDU USA LLC
    Inventors: Fan Zhu, Qi Kong, Xiang Yu, Sen Hu, Qi Luo, Zhenguang Zhu, Yuchang Pan, Wenli Yang, Guang Yang, Jingao Wang
  • Publication number: 20180307234
    Abstract: In one embodiment, a lane departure detection system detects at a first point in time that a wheel of an ADV rolls onto a lane curb disposed on an edge of a lane in which the ADV is moving. The system detects at a second point in time that the wheel of the ADV rolls off the lane curb of the lane. The system calculates an angle between a moving direction of the ADV and a lane direction of the lane based on the time difference between the first point in time and the second point in time in view of a current speed of the ADV. The system then generates a control command based on the angle to adjust the moving direction of the ADV in order to prevent the ADV from further drifting off the lane direction of the lane.
    Type: Application
    Filed: April 19, 2017
    Publication date: October 25, 2018
    Inventors: Fan ZHU, Qi KONG, Qi LUO, Xiang YU, Sen HU, Zhenguang ZHU, Xiaoxin FU, Jiarui HE, Hongye LI, Yuchang PAN, Zhongpu XIA, Chunming ZHAO, Guang YANG, Jingao WANG
  • Publication number: 20180304900
    Abstract: In one embodiment, planning data is received, for example, from a planning module, to drive an autonomous driving vehicle (ADV) from a starting location and a destination location. In response, a series of control commands are generated based on the planning data, where the control commands are to be applied at different points in time from the starting location to the destination location. A cost is calculated by applying a cost function to the control commands, a first road friction to be estimated in a current trip, and a second road friction estimated during a prior trip from the starting location to the destination location. The first road friction of the current trip is estimated using the cost function in view of a prior termination cost of the prior trip, such that the cost reaches minimum.
    Type: Application
    Filed: January 13, 2017
    Publication date: October 25, 2018
    Inventors: Qi LUO, Fan ZHU, Sen HU, Qi KONG, Xiang YU, Zhenguang ZHU, Yuchang PAN, Wenli YANG, Guang YANG
  • Publication number: 20180297606
    Abstract: In one embodiment, a request is received to turn the autonomous driving vehicle (ADV) from a first direction to a second direction. In response to the request, a number of segment masses of a number of segments of the ADV are determined. The segment masses are located on a plurality of predetermined locations within a vehicle platform of the ADV. A location of a mass center for an entire ADV is calculated based on the segment masses of the segments of the ADV, where the mass center represents a center of an entire mass of the entire ADV. A steering control command based on the location of the mass center of the entire ADV for steering control of the ADV.
    Type: Application
    Filed: March 10, 2017
    Publication date: October 18, 2018
    Inventors: Qi LUO, Qi KONG, Fan ZHU, Sen HU, Xiang YU, Zhenguang ZHU, Yuchang PAN, Jiarui HE, Haoyang FAN, Guang YANG, Jingao WANG
  • Publication number: 20180299898
    Abstract: When an ADV is detected to transition from a manual driving mode to an autonomous driving mode, a first pedal value corresponding to a speed of the ADV at a previous command cycle during which the ADV was operating in the manual driving mode is determined. A second pedal value is determined based on a target speed of the ADV at a current command cycle during which the ADV is operating in an autonomous driving mode. A pedal value represents a pedal percentage of a maximum pedal pressure or maximum pedal pressed distance of a throttle pedal or brake pedal from a neutral position. A speed command is generated and issued to the ADV based on the first pedal value and the second pedal value, such that the ADV runs in a similar acceleration before and after switching from the manual driving mode to the autonomous driving mode.
    Type: Application
    Filed: March 10, 2017
    Publication date: October 18, 2018
    Inventors: Qi LUO, Qi KONG, Fan ZHU, Sen HU, Xiang YU, Zhenguang ZHU, Yuchang PAN, Jiarui HE, Haoyang FAN, Guang YANG, Jingao WANG
  • Publication number: 20180251135
    Abstract: According to one embodiment, when an ADV transitions from a manual driving mode to an autonomous driving mode, a first speed reference is determined based on a current position of the ADV. The current position of the ADV is dynamically measured in response to a speed control command issued in a previous command cycle and a target speed of a current command cycle. A second speed reference is determined based on a current target position for a current command cycle. A speed control command is then generated for controlling the speed of the ADV in the autonomous driving mode based on the first speed reference, the second speed reference, and the target speed of the ADV for the current command cycle, such that the ADV operates in a similar acceleration rate or deceleration rate before and after transitioning from the manual driving mode to the autonomous driving mode.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 6, 2018
    Inventors: Qi LUO, Qi KONG, Fan ZHU, Sen HU, Xiang YU, Zhenguang ZHU, Yuchang PAN, Jiarui HE, Haoyang FAN, Guang YANG, Jingao WANG
  • Publication number: 20180196440
    Abstract: In one embodiment, an autonomous driving vehicle (ADV) speed following system determines how much and when to apply a throttle or a brake control of an ADV to maneuver the ADV around, or to avoid, obstacles of a planned route. The speed following system calculates a first torque force to accelerate the ADV, a second torque force to counteract frictional forces and wind resistances to maintain a reference speed, and a third torque force to minimize an initial difference and external disturbances thereafter between predefined target speed and actual speed of the ADV over a planned route. The speed following system determines a throttle-brake torque force based on the first, second, and third torque forces and utilizes the throttle-brake torque force to control a subsequent speed of the ADV.
    Type: Application
    Filed: November 17, 2016
    Publication date: July 12, 2018
    Inventors: Fan ZHU, Qi KONG, Xiang YU, Sen HU, Qi LUO, Zhenguang ZHU, Yuchang PAN, Wenli YANG, Guang YANG, Jingao WANG
  • Publication number: 20180186403
    Abstract: In one embodiment, an autonomous driving vehicle (ADV) steering control system determines how much and when to apply a steering control to maneuver obstacles of a planned route. The steering control system calculates a first steering angle based on a target directional angle and an actual directional angle of the ADV, a second steering angle based on a target lateral position and an actual lateral position of the ADV to maneuver a planned route, an object, or an obstacle course. The steering control system determines a target steering angle based on the first steering angle and the second steering angles and utilizes the target steering angle to control a subsequent steering angle of the ADV.
    Type: Application
    Filed: November 24, 2016
    Publication date: July 5, 2018
    Inventors: Fan ZHU, Qi KONG, Xiang YU, Sen HU, Qi LUO, Zhenguang ZHU, Yuchang PAN, Wenli YANG, Guang YANG, Jingao WANG
  • Publication number: 20180170395
    Abstract: Described is a system and method that provides the ability for an autonomous driving vehicle (ADV) to determine (or estimate) one or more control characteristics for the ADV. In order to determine these control characteristics, the system may perform one or more driving maneuvers such as an acceleration or deceleration maneuver, and a constant velocity maneuver. By performing these maneuvers using various known forces, the system may then perform various calculations to obtain one or more unknown characteristics. For example, the system may determine as estimated mass of the ADV, and as a result, adjust (or tune) various controls of the ADV based on the estimated mass.
    Type: Application
    Filed: December 19, 2016
    Publication date: June 21, 2018
    Inventors: Qi Luo, Qi Kong, Fan Zhu, Sen Hu, Xiang Yu, Guang Yang, Jingao Wang
  • Publication number: 20180164810
    Abstract: In one embodiment, when speed control command (e.g., throttle, brake commands) is issued based on a target speed, a first feedback parameters is determined based on an expected speed and an actual speed of the ADV in response to the speed control command. A second feedback parameter is determined by applying a speed control parameter adjustment (SCPA) model to a set of input parameters that are captured or measured at the point in time. The set of input parameters represents a driving environment of the ADV at the point in time. One or more control parameters of a speed controller of the ADV is adjusted based on the first feedback parameter and the second feedback parameter, where the speed controller is configured to generate and issue speed control commands. Subsequent speed control commands can be generated based on the adjusted speed control parameters of the speed controller.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Qi LUO, Fan ZHU, Sen HU, Qi KONG, Xiang YU, Guang YANG
  • Patent number: 9735668
    Abstract: A constant-voltage drive device capable of adjusting output voltage includes a chopping wave structure, an AC power voltage detection module, an AC voltage signal bias module, a power factor correction controller with multiplier, a power factor correction and energy conversion and transmission module, an output control module, a reference signal generation module, an AC power phase angle detection module and a phase angle information transmission module. The output voltage can be both constant and adjustable, so that the output changes with the phase angle information of input, and also provides the chopping wave structure with current for proper functioning. The device is applicable for bigger power range with better compatibility and stronger adaptability.
    Type: Grant
    Filed: December 27, 2015
    Date of Patent: August 15, 2017
    Assignee: ADPOWER TECHNOLOGY (WUXI) CO., LTD.
    Inventors: Ruopeng Xu, Yongbing Yang, Sen Hu
  • Publication number: 20160190913
    Abstract: A constant-voltage drive device capable of adjusting output voltage includes a chopping wave structure, an AC power voltage detection module, an AC voltage signal bias module, a power factor correction controller with multiplier, a power factor correction and energy conversion and transmission module, an output control module, a reference signal generation module, an AC power phase angle detection module and a phase angle information transmission module. The output voltage can be both constant and adjustable, so that the output changes with the phase angle information of input, and also provides the chopping wave structure with current for proper functioning. The device is applicable for bigger power range with better compatibility and stronger adaptability.
    Type: Application
    Filed: December 27, 2015
    Publication date: June 30, 2016
    Inventors: Ruopeng Xu, Yongbing Yang, Sen Hu
  • Publication number: 20150326631
    Abstract: A method of operation of a media distribution system includes: streaming a media object from an external system via a first browser; receiving a media request from a viewer device; determining a confirmation of whether the media request is for the media object; and serving a portion of the media object from a sandboxed memory of the first browser for presenting on a second browser of the viewer device in response to the confirmation.
    Type: Application
    Filed: July 6, 2015
    Publication date: November 12, 2015
    Inventors: Xuan Zhang, Sen Hu
  • Patent number: 9118522
    Abstract: A method of operation of a media distribution system includes: streaming a media object from an external system via a first browser; receiving a media request from a viewer device; determining a confirmation of whether the media request is for the media object; and serving a portion of the media object from a sandboxed memory of the first browser for presenting on a second browser of the viewer device in response to the confirmation.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: August 25, 2015
    Assignee: QINGDAO YUN ZHONG NETWORKS LIMITED
    Inventors: Xuan Zhang, Sen Hu
  • Patent number: 8810518
    Abstract: A password input device includes a display unit, an input unit and a control unit. The display unit includes a group of LCD displays for display numerals. The input unit includes a group of keys corresponding to the LCD displays. The keys are positioned on the corresponding LCD displays; the control unit creates a group of numerical key sequences, and controls the LCD displays to display the numerical key sequences through the keys.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: August 19, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Ting Ge, Wen-Sen Hu
  • Publication number: 20130346626
    Abstract: A method of operation of a media distribution system includes: streaming a media object from an external system via a first browser; receiving a media request from a viewer device; determining a confirmation of whether the media request is for the media object; and serving a portion of the media object from a sandboxed memory of the first browser for presenting on a second browser of the viewer device in response to the confirmation.
    Type: Application
    Filed: August 21, 2012
    Publication date: December 26, 2013
    Inventors: Xuan Zhang, Sen Hu
  • Patent number: 8604802
    Abstract: A checking circuit for a serial port connector includes a first inverter, a second inverter, a third inverter, and a first light emitting diode (LED) and a second LED with different colors. An input of the first inverter is connected to a transmitted data pin of the serial port connector. An output of the first inverter is connected to an anode of the first LED. An input of the second inverter is connected to the transmitted data pin of the serial port connector. An output of the second inverter is connected to an input of the third inverter. An output of the third inverter is connected to an anode of the second LED. Cathodes of the first and second LEDs are grounded.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: December 10, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Wen-Sen Hu, Ting Ge
  • Patent number: 8582388
    Abstract: A serial advanced technology attachment dual in-line memory module device includes a power circuit, a storage chip, a control chip connected to the storage chip, and a detecting chip storing a preset voltage. The detecting chip includes a detecting pin connected to a power circuit through a first resistor and grounded through a second resistor, a ground pin grounded, a voltage pin connected to the power circuit, the control chip, and the storage chip, and an output pin connected to the storage chip. The detecting chip compares an output voltage of the power circuit detected by the detecting pin with the preset voltage, to output a control signal through the output pin to the control chip in response to the detected voltage being less than the preset voltage, to signal the control chip to control the storage chip to store data.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: November 12, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Wen-Sen Hu, Wei-Min He