Patents by Inventor Senait Asmellash

Senait Asmellash has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210098131
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Application
    Filed: December 11, 2020
    Publication date: April 1, 2021
    Applicant: BIODESIX, INC.
    Inventors: Joanna Roder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Ami Steingrimsson, Heinrich Roder, Senait Asmellash, Kevin Sayers, Caroline Maher
  • Patent number: 10950348
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: March 16, 2021
    Assignee: BIODESIX, INC.
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher
  • Publication number: 20180277249
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Application
    Filed: May 29, 2018
    Publication date: September 27, 2018
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher
  • Patent number: 10007766
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: June 26, 2018
    Assignee: Biodesix, Inc.
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher, Jeffrey Weber
  • Patent number: 9606101
    Abstract: A method of analyzing a biological sample, for example serum or other blood-based samples, using a MALDI-TOF mass spectrometer instrument is described. The method includes the steps of applying the sample to a sample spot on a MALDI-TOF sample plate and directing more than 20,000 laser shots to the sample at the sample spot and collecting mass-spectral data from the instrument. In some embodiments at least 100,000 laser shots and even 500,000 shots are directed onto the sample. It has been discovered that this approach, referred to as “deep-MALDI”, leads to a reduction in the noise level in the mass spectra and that a significant amount of additional spectral information can be obtained from the sample. Moreover, peaks visible at lower number of shots become better defined and allow for more reliable comparisons between samples.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: March 28, 2017
    Assignee: Biodesix, Inc.
    Inventors: Heinrich Röder, Senait Asmellash, Jenna Allen, Maxim Tsypin
  • Publication number: 20170039345
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Application
    Filed: July 12, 2016
    Publication date: February 9, 2017
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher, Jeffrey Weber
  • Patent number: 9279798
    Abstract: A method of analyzing a biological sample, for example serum or other blood-based samples, using a MALDI-TOF mass spectrometer instrument is described. The method includes the steps of applying the sample to a sample spot on a MALDI-TOF sample plate and directing more than 20,000 laser shots to the sample at the sample spot and collecting mass-spectral data from the instrument. In some embodiments at least 100,000 laser shots and even 500,000 shots are directed onto the sample. It has been discovered that this approach, referred to as “deep-MALDI”, leads to a reduction in the noise level in the mass spectra and that a significant amount of additional spectral information can be obtained from the sample. Moreover, peaks visible at lower number of shots become better defined and allow for more reliable comparisons between samples.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 8, 2016
    Assignee: Biodesix, Inc.
    Inventors: Heinrich Röder, Senait Asmellash, Jenna Allen, Maxim Tsypin
  • Publication number: 20160018410
    Abstract: A method of analyzing a biological sample, for example serum or other blood-based samples, using a MALDI-TOF mass spectrometer instrument is described. The method includes the steps of applying the sample to a sample spot on a MALDI-TOF sample plate and directing more than 20,000 laser shots to the sample at the sample spot and collecting mass-spectral data from the instrument. In some embodiments at least 100,000 laser shots and even 500,000 shots are directed onto the sample. It has been discovered that this approach, referred to as “deep-MALDI”, leads to a reduction in the noise level in the mass spectra and that a significant amount of additional spectral information can be obtained from the sample. Moreover, peaks visible at lower number of shots become better defined and allow for more reliable comparisons between samples.
    Type: Application
    Filed: September 29, 2015
    Publication date: January 21, 2016
    Inventors: Heinrich Röder, Senait Asmellash, Jenna Allen, Maxim Tsypin
  • Publication number: 20130320203
    Abstract: A method of analyzing a biological sample, for example serum or other blood-based samples, using a MALDI-TOF mass spectrometer instrument is described. The method includes the steps of applying the sample to a sample spot on a MALDI-TOF sample plate and directing more than 20,000 laser shots to the sample at the sample spot and collecting mass-spectral data from the instrument. In some embodiments at least 100,000 laser shots and even 500,000 shots are directed onto the sample. It has been discovered that this approach, referred to as “deep-MALDI”, leads to a reduction in the noise level in the mass spectra and that a significant amount of additional spectral information can be obtained from the sample. Moreover, peaks visible at lower number of shots become better defined and allow for more reliable comparisons between samples.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 5, 2013
    Inventors: Heinrich Röder, Senait Asmellash, Jenna Allen, Maxim Tsypin