Patents by Inventor Senkei Umehara

Senkei Umehara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940410
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction with peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of IL-10 at a concentration of 4 ng/ml is also disclosed, as is detection of VEGF.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: March 26, 2024
    Assignee: The Regents of the University of California
    Inventors: Miloslav Karhanek, Chris David Webb, Senkei Umehara, Nader Pourmand
  • Publication number: 20220260520
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction with peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of IL-10 at a concentration of 4 ng/ml is also disclosed, as is detection of VEGF.
    Type: Application
    Filed: January 18, 2022
    Publication date: August 18, 2022
    Inventors: Miloslav Karhanek, Chris David Webb, Senkei Umehara, Nader Pourmand
  • Patent number: 11255814
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction with peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of IL-10 at a concentration of 4 ng/ml is also disclosed, as is detection of VEGF.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: February 22, 2022
    Assignee: The Regents of the University of California
    Inventors: Miloslav Karhanek, Chris David Webb, Senkei Umehara, Nader Pourmand
  • Publication number: 20200200704
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction with peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of IL-10 at a concentration of 4 ng/ml is also disclosed, as is detection of VEGF.
    Type: Application
    Filed: March 11, 2019
    Publication date: June 25, 2020
    Inventors: Miloslav Karhanek, Chris David Webb, Senkei Umehara, Nader Pourmand
  • Publication number: 20200182827
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction with peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of IL-10 at a concentration of 4 ng/ml is also disclosed, as is detection of VEGF.
    Type: Application
    Filed: September 30, 2019
    Publication date: June 11, 2020
    Inventors: Miloslav Karhanek, Chris David Webb, Senkei Umehara, Nader Pourmand
  • Publication number: 20180259480
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction with peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of IL-10 at a concentration of 4ng/ml is also disclosed, as is detection of VEGF.
    Type: Application
    Filed: September 6, 2017
    Publication date: September 13, 2018
    Inventors: Miloslav Karhanek, Chris David Webb, Senkei Umehara, Nader Pourmand
  • Patent number: 9766204
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction with peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectable change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of IL-10 at a concentration of 4 ng/ml is also disclosed, as is detection of VEGF.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: September 19, 2017
    Assignee: The Regents of the University of California
    Inventors: Miloslav Karhanek, Chris David Webb, Senkei Umehara, Nader Pourmand
  • Publication number: 20150198559
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction with peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectable change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of IL-10 at a concentration of 4 ng/ml is also disclosed, as is detection of VEGF.
    Type: Application
    Filed: January 22, 2015
    Publication date: July 16, 2015
    Inventors: Miloslav Karhanek, Chris David Webb, Senkei Umehara, Nader Pourmand
  • Patent number: 8940142
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction withy peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of Il-10 at a concentration of 4ng/nl is also disclosed, as is detection of VEGF.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: January 27, 2015
    Assignee: The Regents of the University of California
    Inventors: Miloslav Karhanek, Chris D. Webb, Senkei Umehara, Nader Pourmand
  • Publication number: 20100072080
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction withy peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of Il-10 at a concentration of 4 ng/nl is also disclosed, as is detection of VEGF.
    Type: Application
    Filed: May 4, 2009
    Publication date: March 25, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Miloslav Karhanek, Chris D. Webb, Senkei Umehara, Nader Pourmand