Patents by Inventor Seo-Woo Nam

Seo-Woo Nam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170229395
    Abstract: A fuse structure includes a fusing line including a first portion, a second portion, and a central portion between the first portion and the second portion; and a dummy fuse neighboring the fusing line, the dummy fuse may include: a first air dummy fuse including a plurality of first air gaps extending in a first direction parallel to the fusing line; and a second air dummy fuse including a second air gap extending in a second direction crossing the fusing line.
    Type: Application
    Filed: June 29, 2016
    Publication date: August 10, 2017
    Inventors: Jae-Hong KIM, Seo-Woo NAM
  • Publication number: 20110201202
    Abstract: A method of forming fine patterns of a semiconductor device, the method including providing a patternable layer; forming a plurality of first photoresist layer patterns on the patternable layer; forming an interfacial layer on the patternable layer and the plurality of first photoresist layer patterns; forming a planarization layer on the interfacial layer; forming a plurality of second photoresist layer patterns on the planarization layer; forming a plurality of planarization layer patterns using the plurality of second photoresist layer patterns; and forming a plurality of layer patterns using the plurality of planarization layer patterns and the plurality of first photoresist layer patterns.
    Type: Application
    Filed: January 14, 2011
    Publication date: August 18, 2011
    Inventors: Chong-Kwang CHANG, Young-Mook OH, Seo-Woo NAM, Woo-Cheol JEON, Ju-Beom YI, Myung-Joo LEE
  • Patent number: 7972958
    Abstract: Provided is a method of fabricating a semiconductor device including a dual silicide process. The method may include sequentially siliciding and stressing a first MOS region, and sequentially siliciding and stressing a second MOS region after siliciding and stressing the first MOS region, the second MOS region being a different type than the first MOS region.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: July 5, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-hoon Lee, Hong-jae Shin, Seo-woo Nam, Sae-il Son, Sang-doo Kim, Jung-deog Lee, Sang-wook Kwon
  • Patent number: 7902609
    Abstract: A semiconductor substrate includes a first transistor area having a first gate electrode and first source/drain areas, a second transistor area having a second gate electrode and second source/drain areas, and an interface area provided at an interface of the first transistor area and the second transistor area and having a third gate electrode. A first stress film is on the first gate electrode and the first source/drain areas of the first transistor area and at least a portion of the third gate electrode of the interface area. A second stress film is on the second gate electrode and the second source/drain areas of the second transistor area and not overlapping the first stress film on the third gate electrode of the interface area or overlapping at least a portion of the first stress film. The second stress film overlapping at least the portion of the first stress film is thinner than the second stress film in the second transistor area. Related methods are also described.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: March 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seo-woo Nam, Ki-chul Kim, Young-joon Moon, Jae-ouk Choo, Hong-jae Shin, Nae-in Lee
  • Patent number: 7785951
    Abstract: Methods of forming integrated circuit devices include forming first, second and third gate electrodes on a semiconductor substrate. A first stress film is provided that covers the first gate electrode and at least a first portion of the third gate electrode. The first stress film has a sufficiently high internal stress characteristic to impart a net compressive stress in a first portion of the semiconductor substrate extending opposite the first gate electrode. A second stress film is also provided. The second stress film covers the second gate electrode and at least a second portion of the third gate electrode. The second stress film has a sufficiently high internal stress characteristic to impart a net tensile stress in a second portion of the semiconductor substrate extending opposite the second gate electrode. The second stress film has an upper surface that is coplanar with an upper surface of the first stress film at a location adjacent the third gate electrode.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: August 31, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seo-woo Nam, Il-young Yoon, Jae-ouk Choo, Hong-jae Shin, Nae-in Lee
  • Patent number: 7759185
    Abstract: A semiconductor device includes a first stress film covering a first gate electrode and first source/drain areas of a first transistor area and at least a portion of a third gate electrode of an interface area, a second stress film covering a second gate electrode and second source/drain areas of a second transistor area and overlapping at least a portion of the first stress film on the third gate electrode of the interface area, and an interlayer insulating film formed on the first and the second stress film.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: July 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seo-woo Nam, Young-joon Moon, Hong-jae Shin, Nae-in Lee
  • Publication number: 20100173497
    Abstract: A method manufacturing a semiconductor integrated circuit device includes providing a substrate; sequentially forming a layer to be etched, a first layer, and a second layer on the substrate; forming on the first and second layers a first etch mask having a plurality of first line patterns separated from each other by a first pitch and extending in a first direction; sequentially performing first etching on the second layer and the first layer using the first etch mask to form an intermediate mask pattern with second and first patterns; forming on the intermediate mask pattern a second etch mask including a plurality of second line patterns separated from each other by a second pitch and extending in a second direction other than the first direction; performing second etching using the second etch mask on a portion of the second pattern so that the remaining portion of the second pattern is left on the first pattern; performing third etching using the second etch mask under different conditions than the secon
    Type: Application
    Filed: January 6, 2010
    Publication date: July 8, 2010
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Chong-Kwang Chang, Hong-Jae Shin, Nae-In Lee, Seo-Woo Nam, In-Keun Lee, Jung-Hoon Lee
  • Publication number: 20100065919
    Abstract: A semiconductor substrate includes a first transistor area having a first gate electrode and first source/drain areas, a second transistor area having a second gate electrode and second source/drain areas, and an interface area provided at an interface of the first transistor area and the second transistor area and having a third gate electrode. A first stress film is on the first gate electrode and the first source/drain areas of the first transistor area and at least a portion of the third gate electrode of the interface area. A second stress film is on the second gate electrode and the second source/drain areas of the second transistor area and not overlapping the first stress film on the third gate electrode of the interface area or overlapping at least a portion of the first stress film. The second stress film overlapping at least the portion of the first stress film is thinner than the second stress film in the second transistor area. Related methods are also described.
    Type: Application
    Filed: November 18, 2009
    Publication date: March 18, 2010
    Inventors: Seo-woo Nam, Ki-chul Kim, Young-joon Moon, Jae-ouk Choo, Hong-jae Shin, Nae-in Lee
  • Patent number: 7642148
    Abstract: A semiconductor substrate includes a first transistor area having a first gate electrode and first source/drain areas, a second transistor area having a second gate electrode and second source/drain areas, and an interface area provided at an interface of the first transistor area and the second transistor area and having a third gate electrode. A first stress film is on the first gate electrode and the first source/drain areas of the first transistor area and at least a portion of the third gate electrode of the interface area. A second stress film is on the second gate electrode and the second source/drain areas of the second transistor area and not overlapping the first stress film on the third gate electrode of the interface area or overlapping at least a portion of the first stress film. The second stress film overlapping at least the portion of the first stress film is thinner than the second stress film in the second transistor area. Related methods are also described.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: January 5, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seo-woo Nam, Ki-chul Kim, Young-joon Moon, Jae-ouk Choo, Hong-jae Shin, Nae-in Lee
  • Publication number: 20090280645
    Abstract: Provided is a method of fabricating a semiconductor device including a dual suicide process. The method may include sequentially siliciding and stressing a first MOS region, and sequentially siliciding and stressing a second MOS region after siliciding and stressing the first MOS region, the second MOS region being a different type than the first MOS region.
    Type: Application
    Filed: April 27, 2009
    Publication date: November 12, 2009
    Inventors: Jung-hoon Lee, Hong-jae Shin, Seo-woo Nam, Sae-il Son, Sang-doo Kim, Jung-deog Lee, Sang-wook Kwon
  • Publication number: 20080272436
    Abstract: A semiconductor device includes a first stress film covering a first gate electrode and first source/drain areas of a first transistor area and at least a portion of a third gate electrode of an interface area, a second stress film covering a second gate electrode and second source/drain areas of a second transistor area and overlapping at least a portion of the first stress film on the third gate electrode of the interface area, and an interlayer insulating film formed on the first and the second stress film.
    Type: Application
    Filed: September 11, 2007
    Publication date: November 6, 2008
    Inventors: Seo-woo Nam, Young-joon Moon, Hong-jae Shin, Nae-in Lee
  • Publication number: 20080081406
    Abstract: A method of fabricating a semiconductor device comprising providing a substrate including a PMOS region and an NMOS region forming a PMOS gate electrode on the PMOS region and an NMOS gate electrode on the NMOS gate region, respectively, forming a stress liner on the PMOS region formed with the PMOS gate on the PMOS region and the NMOS region formed with the NMOS gate electrode on the NMOS region, and selectively applying radiation onto the stress liner formed on either one of the PMOS region and the NMOS region in an inert vapor ambiance.
    Type: Application
    Filed: May 18, 2007
    Publication date: April 3, 2008
    Inventors: Jae-ouk Choo, II-young Yoon, Seo-woo Nam, Ja-eung Koo
  • Publication number: 20080081476
    Abstract: Methods of forming integrated circuit devices include forming first, second and third gate electrodes on a semiconductor substrate. A first stress film is provided that covers the first gate electrode and at least a first portion of the third gate electrode. The first stress film has a sufficiently high internal stress characteristic to impart a net compressive stress in a first portion of the semiconductor substrate extending opposite the first gate electrode. A second stress film is also provided. The second stress film covers the second gate electrode and at least a second portion of the third gate electrode. The second stress film has a sufficiently high internal stress characteristic to impart a net tensile stress in a second portion of the semiconductor substrate extending opposite the second gate electrode. The second stress film has an upper surface that is coplanar with an upper surface of the first stress film at a location adjacent the third gate electrode.
    Type: Application
    Filed: July 31, 2007
    Publication date: April 3, 2008
    Inventors: Seo-woo Nam, Il-young Yoon, Jae-ouk Choo, Hong-jae Shin, Nae-in Lee
  • Publication number: 20080079087
    Abstract: A semiconductor substrate includes a first transistor area having a first gate electrode and first source/drain areas, a second transistor area having a second gate electrode and second source/drain areas, and an interface area provided at an interface of the first transistor area and the second transistor area and having a third gate electrode. A first stress film is on the first gate electrode and the first source/drain areas of the first transistor area and at least a portion of the third gate electrode of the interface area. A second stress film is on the second gate electrode and the second source/drain areas of the second transistor area and not overlapping the first stress film on the third gate electrode of the interface area or overlapping at least a portion of the first stress film. The second stress film overlapping at least the portion of the first stress film is thinner than the second stress film in the second transistor area. Related methods are also described.
    Type: Application
    Filed: September 7, 2007
    Publication date: April 3, 2008
    Inventors: Seo-woo Nam, Ki-chul Kim, Young-joon Moon, Jae-ouk Choo, Hong-jae Shin, Nae-in Lee
  • Patent number: 7307014
    Abstract: A method of forming a via contact structure using a dual damascene process is disclosed. According to one embodiment a sacrificial layer is formed on an insulating interlayer during the formation of a preliminary via hole. The sacrificial layer has the same composition as a layer filling the preliminary via hole in a subsequent trench formation process. The sacrificial layer and the layer filling the preliminary via hole are simultaneously removed after the trench formation process is carried out. According to another embodiment, a thin capping oxide layer is formed on an insulating interlayer during the formation of a preliminary via hole. The thin capping oxide layer is removed together with a sacrificial layer after a trench formation process is carried out.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: December 11, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hak Kim, Kyoung-Woo Lee, Hong-Jae Shin, Young-Joon Moon, Seo-Woo Nam
  • Publication number: 20070178644
    Abstract: A semiconductor device having a dielectric or an insulating layer with decreased (or minimal) erosion properties when performing metal Chemical Mechanical Polishing (CMP) and a method of fabricating the same are provided. The semiconductor device may include gate electrodes formed on a substrate. A first interlayer oxide layer may be formed on the substrate and between the gate electrodes. A second interlayer oxide layer, which is harder than the first interlayer oxide layer, may be formed on the first interlayer oxide layer. A plug electrode may be formed through the second interlayer oxide layer and the first interlayer oxide layer.
    Type: Application
    Filed: January 26, 2007
    Publication date: August 2, 2007
    Inventors: Ja-eung Koo, Il-young Yoon, Jae-ouk Choo, Yong-kuk Jeong, Seo-woo Nam, Hong-jae Shin
  • Publication number: 20060003574
    Abstract: A method of forming a via contact structure using a dual damascene process is disclosed. According to one embodiment a sacrificial layer is formed on an insulating interlayer during the formation of a preliminary via hole. The sacrificial layer has the same composition as a layer filling the preliminary via hole in a subsequent trench formation process. The sacrificial layer and the layer filling the preliminary via hole are simultaneously removed after the trench formation process is carried out. According to another embodiment, a thin capping oxide layer is formed on an insulating interlayer during the formation of a preliminary via hole. The thin capping oxide layer is removed together with a sacrificial layer after a trench formation process is carried out.
    Type: Application
    Filed: April 6, 2005
    Publication date: January 5, 2006
    Inventors: Jae-Hak Kim, Kyoung-Woo Lee, Hong-Jae Shin, Young-Joon Moon, Seo-Woo Nam