Patents by Inventor Seok Cheol Shin

Seok Cheol Shin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11339444
    Abstract: A method for detecting genes sensitive to low-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to low-level ionizing radiation and related to suppressing thymic cancer, discovered in a carcinogenic entity and verified in a normal entity are detected by subjecting a cancerous AKR/J mouse and a normal ICR mouse to low-level radiation. Thymus is collected therefrom, immunogenic and apoptotic genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, a gene having a specific reaction to radiation can be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: May 24, 2022
    Assignee: KOREA HYDRO & NUCLEAR POWER CO., LTD
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin
  • Patent number: 11339445
    Abstract: A method for detecting genes sensitive to low-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to low-level ionizing radiation and related to suppressing thymic cancer, discovered in a carcinogenic entity and verified in a normal entity are detected by subjecting a cancerous AKR/J mouse and a normal ICR mouse to low-level radiation. Thymus is collected therefrom, immunogenic and apoptotic genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, a gene having a specific reaction to radiation can be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: May 24, 2022
    Assignee: KOREA HYDRO & NUCLEAR POWER CO., LTD
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin
  • Patent number: 11339443
    Abstract: A method for detecting genes sensitive to low-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to low-level ionizing radiation and related to suppressing thymic cancer, discovered in a carcinogenic entity and verified in a normal entity are detected by subjecting a cancerous AKR/J mouse and a normal ICR mouse to low-level radiation. Thymus is collected therefrom, immunogenic and apoptotic genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, a gene having a specific reaction to radiation can be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: May 24, 2022
    Assignee: KOREA HYDRO & NUCLEAR POWER CO., LTD.
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin
  • Patent number: 10844440
    Abstract: A method for detecting genes sensitive to high-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to high-level ionizing radiation discovered in a carcinogenic entity and verified in a normal entity are detected, by subjecting a cancerous AKR/J mouse and a normal ICR mouse to high-level radiation. Thymus is collected therefrom and fatty acid metabolism-related genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, the present invention allows a gene having a specific reaction to radiation to be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: November 24, 2020
    Assignee: KOREA HYDRO & NUCLEAR POWER CO., LTD
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin
  • Patent number: 10844438
    Abstract: A method for detecting genes sensitive to high-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to high-level ionizing radiation discovered in a carcinogenic entity and verified in a normal entity are detected, by subjecting a cancerous AKR/J mouse and a normal ICR mouse to high-level radiation. Thymus is collected therefrom and fatty acid metabolism-related genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, the present invention allows a gene having a specific reaction to radiation to be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: November 24, 2020
    Assignee: KOREA HYDRO & NUCLEAR POWER CO., LTD
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin
  • Patent number: 10844439
    Abstract: A method for detecting genes sensitive to high-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to high-level ionizing radiation discovered in a carcinogenic entity and verified in a normal entity are detected, by subjecting a cancerous AKR/J mouse and a normal ICR mouse to high-level radiation. Thymus is collected therefrom and fatty acid metabolism-related genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, the present invention allows a gene having a specific reaction to radiation to be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: November 24, 2020
    Assignee: KOREA HYDRO & NUCLEAR POWER CO., LTD
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin
  • Patent number: 10760134
    Abstract: A method for detecting genes sensitive to high-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to high-level ionizing radiation discovered in a carcinogenic entity and verified in a normal entity are detected, by subjecting a cancerous AKR/J mouse and a normal ICR mouse to high-level radiation. Thymus is collected therefrom and fatty acid metabolism-related genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, the present invention allows a gene having a specific reaction to radiation to be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: September 1, 2020
    Assignee: KOREA HYDRO & NUCLEAR POWER CO., LTD
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin
  • Publication number: 20190085408
    Abstract: A method for detecting genes sensitive to low-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to low-level ionizing radiation and related to suppressing thymic cancer, discovered in a carcinogenic entity and verified in a normal entity are detected by subjecting a cancerous AKR/J mouse and a normal ICR mouse to low-level radiation. Thymus is collected therefrom, immunogenic and apoptotic genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, a gene having a specific reaction to radiation can be accurately detected by preventing the interference of confounding variables.
    Type: Application
    Filed: November 16, 2018
    Publication date: March 21, 2019
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin
  • Publication number: 20190085409
    Abstract: A method for detecting genes sensitive to low-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to low-level ionizing radiation and related to suppressing thymic cancer, discovered in a carcinogenic entity and verified in a normal entity are detected by subjecting a cancerous AKR/J mouse and a normal ICR mouse to low-level radiation. Thymus is collected therefrom, immunogenic and apoptotic genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, a gene having a specific reaction to radiation can be accurately detected by preventing the interference of confounding variables.
    Type: Application
    Filed: November 16, 2018
    Publication date: March 21, 2019
    Inventors: Hee Sun KIM, Seung Jin CHOI, Moo Hyun CHOI, Jin Jong BONG, Seok Cheol SHIN
  • Publication number: 20190071734
    Abstract: A method for detecting genes sensitive to low-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to low-level ionizing radiation and related to suppressing thymic cancer, discovered in a carcinogenic entity and verified in a normal entity are detected by subjecting a cancerous AKR/J mouse and a normal ICR mouse to low-level radiation. Thymus is collected therefrom, immunogenic and apoptotic genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, a gene having a specific reaction to radiation can be accurately detected by preventing the interference of confounding variables.
    Type: Application
    Filed: November 16, 2018
    Publication date: March 7, 2019
    Inventors: Hee Sun KIM, Seung Jin CHOI, Moo Hyun CHOI, Jin Jong BONG, Seok Cheol SHIN
  • Patent number: 10174379
    Abstract: A method for detecting genes sensitive to low-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to low-level ionizing radiation and related to suppressing thymic cancer, discovered in a carcinogenic entity and verified in a normal entity are detected by subjecting a cancerous AKR/J mouse and a normal ICR mouse to low-level radiation. Thymus is collected therefrom, immunogenic and apoptotic genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, a gene having a specific reaction to radiation can be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: January 8, 2019
    Assignee: KOREA HYDRO & NUCLEAR POWER CO., LTD.
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin
  • Publication number: 20180251857
    Abstract: A method for detecting genes sensitive to high-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to high-level ionizing radiation discovered in a carcinogenic entity and verified in a normal entity are detected, by subjecting a cancerous AKR/J mouse and a normal ICR mouse to high-level radiation. Thymus is collected therefrom and fatty acid metabolism-related genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, the present invention allows a gene having a specific reaction to radiation to be accurately detected by preventing the interference of confounding variables.
    Type: Application
    Filed: April 18, 2018
    Publication date: September 6, 2018
    Inventors: Hee Sun KIM, Seung Jin CHOI, Moo Hyun CHOI, Jin Jong BONG, Seok Cheol SHIN
  • Publication number: 20180251855
    Abstract: A method for detecting genes sensitive to high-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to high-level ionizing radiation discovered in a carcinogenic entity and verified in a normal entity are detected, by subjecting a cancerous AKR/J mouse and a normal ICR mouse to high-level radiation. Thymus is collected therefrom and fatty acid metabolism-related genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, the present invention allows a gene having a specific reaction to radiation to be accurately detected by preventing the interference of confounding variables.
    Type: Application
    Filed: April 18, 2018
    Publication date: September 6, 2018
    Inventors: Hee Sun KIM, Seung Jin CHOI, Moo Hyun CHOI, Jin Jong BONG, Seok Cheol SHIN
  • Publication number: 20180251856
    Abstract: A method for detecting genes sensitive to high-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to high-level ionizing radiation discovered in a carcinogenic entity and verified in a normal entity are detected, by subjecting a cancerous AKR/J mouse and a normal ICR mouse to high-level radiation. Thymus is collected therefrom and fatty acid metabolism-related genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, the present invention allows a gene having a specific reaction to radiation to be accurately detected by preventing the interference of confounding variables.
    Type: Application
    Filed: April 18, 2018
    Publication date: September 6, 2018
    Inventors: Hee Sun KIM, Seung Jin CHOI, Moo Hyun CHOI, Jin Jong BONG, Seok Cheol SHIN
  • Publication number: 20180237865
    Abstract: A method for detecting genes sensitive to high-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to high-level ionizing radiation discovered in a carcinogenic entity and verified in a normal entity are detected, by subjecting a cancerous AKR/J mouse and a normal ICR mouse to high-level radiation. Thymus is collected therefrom and fatty acid metabolism-related genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, the present invention allows a gene having a specific reaction to radiation to be accurately detected by preventing the interference of confounding variables.
    Type: Application
    Filed: April 18, 2018
    Publication date: August 23, 2018
    Inventors: Hee Sun KIM, Seung Jin CHOI, Moo Hyun CHOI, Jin Jong BONG, Seok Cheol SHIN
  • Patent number: 9976186
    Abstract: A method for detecting genes sensitive to high-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to high-level ionizing radiation discovered in a carcinogenic entity and verified in a normal entity are detected, by subjecting a cancerous AKR/J mouse and a normal ICR mouse to high-level radiation. Thymus is collected therefrom and fatty acid metabolism-related genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, a gene having a specific reaction to radiation can be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: May 22, 2018
    Assignee: KOREA HYDRO & NUCLEAR POWER CO., LTD.
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin
  • Patent number: 9714453
    Abstract: A method for detecting genes sensitive to low-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to low-level ionizing radiation, discovered in a carcinogenic entity and verified in a normal entity are detected by subjecting a cancerous AKR/J mouse and a normal ICR mouse to low-level radiation. Thymus is collected therefrom, and glycometabolism-related genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, a gene having a specific reaction to radiation can be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: July 25, 2017
    Assignee: KOREA HYDRO & NUCLEAR POWER CO., LTD.
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin
  • Patent number: 9708668
    Abstract: A method for detecting genes sensitive to low-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to low-level ionizing radiation, discovered in a carcinogenic entity and verified in a normal entity are detected by subjecting a cancerous AKR/J mouse and a normal ICR mouse to low-level radiation. Thymus is collected therefrom, and glycometabolism-related genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, a gene having a specific reaction to radiation can be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: July 18, 2017
    Assignee: KOREA HYDRO & NUCLEAR POWER CO., LTD.
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin
  • Patent number: 9708670
    Abstract: A method for detecting genes sensitive to low-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to low-level ionizing radiation, discovered in a carcinogenic entity and verified in a normal entity are detected by subjecting a cancerous AKR/J mouse and a normal ICR mouse to low-level radiation. Thymus is collected therefrom, and glycometabolism-related genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, a gene having a specific reaction to radiation can be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: July 18, 2017
    Assignee: KOREA HYDRO & NUCLEAR POWER CO., LTD.
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin
  • Patent number: 9708669
    Abstract: A method for detecting genes sensitive to low-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to low-level ionizing radiation, discovered in a carcinogenic entity and verified in a normal entity are detected by subjecting a cancerous AKR/J mouse and a normal ICR mouse to low-level radiation. Thymus is collected therefrom, and glycometabolism-related genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, a gene having a specific reaction to radiation can be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: July 18, 2017
    Assignee: KOREA HYDRO & NUCLEAR POWER CO., LTD.
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin