Patents by Inventor Seok-Lyong Song

Seok-Lyong Song has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9371765
    Abstract: The present invention relates to a metal filter for purifying the exhaust gas from a ship, and a preparation method thereof. The purpose of the present invention is to provide: a metal filter for purifying the exhaust gas from a ship, capable of reducing nitrogen oxide by 85% or more at 250-300° C.; and a preparation method thereof. The metal filter for removing nitrogen oxide contained in the exhaust gas from a ship of the present invention comprises an integrated catalyst, wherein a metal substrate comprising irregularities is coated with a low temperature active catalyst in which vanadium (V), tungsten (W) and alumina sol are supported in a Ti-pillared clay (Ti-PILC) powdered support.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: June 21, 2016
    Assignees: HYUNDAI HEAVY INDUSTRIES CO., LTD., HYUNDAI BNGSTEEL CO., LTD., E&D CO., LTD.
    Inventors: Hee-Sung Yang, Joon-Ho Ko, Chan-Do Park, Seok-Lyong Song, Jae-Woo Lee, Sung-Young Lee, Jai-Hyun Park, Kyoung-Jae Kim, Seung-Han Han, Young-Jin Cho, Tae-Min Kim, Ju-Yong Jung
  • Publication number: 20140170032
    Abstract: The present invention relates to a metal filter for purifying the exhaust gas from a ship, and a preparation method thereof. The purpose of the present invention is to provide: a metal filter for purifying the exhaust gas from a ship, capable of reducing nitrogen oxide by 85% or more at 250-300° C.; and a preparation method thereof. The metal filter for removing nitrogen oxide contained in the exhaust gas from a ship of the present invention comprises an integrated catalyst, wherein a metal substrate comprising irregularities is coated with a low temperature active catalyst in which vanadium (V), tungsten (W) and alumina sol are supported in a Ti-pillared clay (Ti-PILC) powdered support.
    Type: Application
    Filed: March 22, 2013
    Publication date: June 19, 2014
    Applicants: HYUNDAI HEAVY INDUSTRIES CO., LTD., E&d CO., LTD., HYUNDAI BANGSTEEL CO., LTD.
    Inventors: Hee-Sung Yang, Joon-Ho Ko, Chan-do Park, Seok-Lyong Song, Jae-Woo Lee, Sung-Young Lee, Jai-Hyun Park, Kyoung-Jae Kim, Seung-Han Han, Young-Jin Cho, Tae-Min Kim, Ju-Yong Jung
  • Patent number: 8729141
    Abstract: Disclosed is a method for methanol synthesis using synthesis gas obtained from reforming of natural gas with carbon dioxide. First, synthesis gas is obtained from steam carbon dioxide reforming of methane, in which steam reforming of natural gas is carried out simultaneously with carbon dioxide reforming of methane, by using a catalyst (Ni/Ce/MgAlOx, or Ni/Ce—Zr/MgAlOx) and processing condition capable of maintaining a predetermined ratio of carbon monoxide, carbon dioxide, and hydrogen [H2/(2CO+3CO2)=0.85-1.15]. Next, methanol synthesis is carried out by using the obtained synthesis gas and a catalyst system suitable for methanol synthesis with minimum byproduct formation (a catalyst system including a Cu—Zn—Al oxide containing CuO, ZnO, and Al2O3 at a predetermined ratio in combination with a cerium-zirconium oxide obtained by a sol-gel process).
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: May 20, 2014
    Assignees: Hyundai Heavy Industries Co., Ltd., Korea Research Institute of Chemical Technology
    Inventors: Jong Wook Bae, Jong Hyeok Oh, Ki Won Jun, Yun Jo Lee, Jun-ho Ko, Seok-Lyong Song, Keh-Sik Min
  • Patent number: 8623927
    Abstract: Disclosed are a catalyst for synthesis of methanol from synthesis gas and a method for preparing the same. The catalyst includes a Cu—Zn—Al oxide containing CuO, ZnO and Al2O3 in a predetermined ratio or Cu—Zn—Al—Zr oxide containing CuO, ZnO, Al2O3 and ZrO2 in a predetermined ratio, in combination with a cerium-zirconium oxide obtained by a sol-gel process. As compared to the existing Cu—Zn—Al catalysts for synthesizing methanol, the catalyst disclosed herein inhibits formation of byproducts and improves yield of methanol. Therefore, it is possible to improve methanol purification efficiency and carbon conversion efficiency.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: January 7, 2014
    Assignees: Hyundai Heavy Industries Co., Ltd., Korea Research Institute of Chemical Technology
    Inventors: Suk-Hwan Kang, Jong Wook Bae, Ki Won Jun, Keh-Sik Min, Seok-Lyong Song, Sam-Heon Jeong
  • Patent number: 8524119
    Abstract: Disclosed are a catalyst for preparing synthesis gas from natural gas and carbon dioxide, and a method for preparing the same. More particularly, a combined reforming process is performed as an economical way of using carbon dioxide, wherein steam reforming of natural gas is carried out simultaneously with carbon dioxide reforming of methane in such a manner that a predetermined ratio of carbon monoxide/carbon dioxide/hydrogen (H2/(2CO+3CO2)=0.85-1.15) is maintained. In this manner, the catalyst is used to prepare synthesis gas suitable for methanol synthesis and Fischer-Tropsch synthesis. Disclosed also is a method for preparing synthesis gas on a specific catalyst consisting of Ni/Ce/MgAlOx or Ni/Ce-Zr/MgAlOx. The catalyst is inhibited from deactivation caused by generation of cokes during the reaction as well as deactivation caused by reoxidation of nickel with water added during the reaction. Therefore, the catalyst shows excellent activity as compared to other catalysts for use in combined reforming.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: September 3, 2013
    Assignees: Hyundai Heavy Industries Co., Ltd., Korea Research Institute of Chemical Technology
    Inventors: Ki Won Jun, Seung-Chan Baek, Jong Wook Bae, Keh-Sik Min, Seok-Lyong Song, Tae-Young Oh
  • Publication number: 20110237689
    Abstract: Disclosed is a method for methanol synthesis using synthesis gas obtained from reforming of natural gas with carbon dioxide. First, synthesis gas is obtained from steam carbon dioxide reforming of methane, in which steam reforming of natural gas is carried out simultaneously with carbon dioxide reforming of methane, by using a catalyst (Ni/Ce/MgAlOx, or Ni/Ce—Zr/MgAlOx) and processing condition capable of maintaining a predetermined ratio of carbon monoxide, carbon dioxide, and hydrogen [H2/(2CO+3CO2)=0.85-1.15] Next, methanol synthesis is carried out by using the obtained synthesis as and a catalyst system suitable for methanol synthesis with minimum byproduct formation (a catalyst system including a Cu—Zn—Al oxide containing CuO, ZnO, and Al2O3 at a predetermined ratio in combination with a cerium-zirconium oxide obtained by a sol-gel process).
    Type: Application
    Filed: September 9, 2009
    Publication date: September 29, 2011
    Inventors: Jong Wook Bae, Jong Hyeok Oh, Ki Won Jun, Yun Jo Lee, Jun-ho Ko, Seok-Lyong Song, Keh-Sik Min
  • Publication number: 20110114892
    Abstract: Disclosed are a catalyst for preparing synthesis gas from natural gas and carbon dioxide, and a method for preparing the same. More particularly, a combined reforming process is performed as an economical way of using carbon dioxide, wherein steam reforming of natural gas is carried out simultaneously with carbon dioxide reforming of methane in such a manner that a predetermined ratio of carbon monoxide/carbon dioxide/hydrogen (H2/(2CO+3CO2)=0.85-1.15) is maintained. In this manner, the catalyst is used to prepare synthesis gas suitable for methanol synthesis and Fischer-Tropsch synthesis. Disclosed also is a method for preparing synthesis gas on a specific catalyst consisting of Ni/Ce/MgAlOx or Ni/Ce—Zr/MgAlOx. The catalyst is inhibited from deactivation caused by generation of cokes during the reaction as well as deactivation caused by reoxidation of nickel with water added during the reaction. Therefore, the catalyst shows excellent activity as compared to other catalysts for use in combined reforming.
    Type: Application
    Filed: July 30, 2009
    Publication date: May 19, 2011
    Inventors: Ki Won Jun, Seung-Chan Baek, Jong Wook Bae, Keh-Sik Min, Seok-Lyong Song, Tae-Young Oh
  • Publication number: 20110118367
    Abstract: Disclosed are a catalyst for synthesis of methanol from synthesis gas and a method for preparing the same. The catalyst includes a Cu—Zn—Al oxide containing CuO, ZnO and Al2O3 in a predetermined ratio or Cu—Zn—Al—Zr oxide containing CuO, ZnO, Al2O3 and ZrO2 in a predetermined ratio, in combination with a cerium-zirconium oxide obtained by a sol-gel process. As compared to the existing Cu—Zn—Al catalysts for synthesizing methanol, the catalyst disclosed herein inhibits formation of byproducts and improves yield of methanol. Therefore, it is possible to improve methanol purification efficiency and carbon conversion efficiency.
    Type: Application
    Filed: July 24, 2009
    Publication date: May 19, 2011
    Inventors: Suk-Hwan Kang, Jong Wook Bae, Ki Won Jun, Keh-Sik Min, Seok-Lyong Song, Sam-Heon Jeong
  • Patent number: 6475944
    Abstract: A catalyst for effectively removing NOx by using NH3 as a reducing agent is disclosed. Particularly, a vanadia impregnated onto Ti-PILC (titania-pillared interlayer clay) is disclosed, which is prepared by the generally known technology. More specifically, a V2O5/Ti-PILC catalyst is disclosed, in which NOx contained in the flue gas from an electric power plant and the like (an excessive amount of SO2 being present in the flue gas stream) is reacted with NH3 (which is injected as a reducing agent) over a vanadia impregnated onto a Ti-PILC, so that they can be converted into harmless nitrogen and water. The V2O5/Ti-PILC catalyst is employed for reducing NOx contained in the exhaust gas stream as well as the large amounts of SO2 into nitrogen and water. The catalyst is prepared by pillaring a titania to a clay by a pillaring method.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: November 5, 2002
    Assignee: Hyundai Heavy Industries Co., Ltd.
    Inventors: Hee-Sung Yang, Seok-Lyong Song, Hyun-Chul Choi, In-Sik Nam, Ho-Jeong Chae