Patents by Inventor Seong-Ryong Ryu

Seong-Ryong Ryu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10958213
    Abstract: A clock oscillator includes with a pullable BAW oscillator to generate an output signal with a target frequency. The BAW oscillator is based on a BAW resonator and voltage-controlled variable load capacitance, responsive to a capacitance control signal to provide a selectable load capacitance. An oscillator driver (such as a differential negative gm transconductance amplifier), is coupled to the BAW oscillator to provide an oscillation drive signal. The BAW oscillator is responsive to the oscillation drive signal to generate the output signal with a frequency based on the selectable load capacitance. The oscillator driver can include a bandpass filter network with a resonance frequency substantially at the target frequency.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: March 23, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ben-yong Zhang, Seong-Ryong Ryu, Ali Kiaei, Ting-Ta Yen, Kai Yiu Tam
  • Patent number: 10804848
    Abstract: The present disclosure describes a low-power, low-phase-noise (LPLPN) oscillator. The LPLPN oscillator includes a resonator load, an amplifier stage, and a loop gain control circuit. The resonator load is structured to resonate at a primary resonant frequency. The amplifier stage is coupled with the resonator load to develop a loop gain that peaks at the primary resonant frequency. The loop gain control circuit is coupled with the amplifier stage, and it is structured to regulate the loop gain for facilitating the amplifier stage to generate an oscillation signal at the primary resonant frequency and suppress a noise signal at a parasitic parallel resonant frequency (PPRF).
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: October 13, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Seong-Ryong Ryu, Ali Kiaei
  • Publication number: 20200274485
    Abstract: A clock oscillator includes with a pullable BAW oscillator to generate an output signal with a target frequency. The BAW oscillator is based on a BAW resonator and voltage-controlled variable load capacitance, responsive to a capacitance control signal to provide a selectable load capacitance. An oscillator driver (such as a differential negative gm transconductance amplifier), is coupled to the BAW oscillator to provide an oscillation drive signal. The BAW oscillator is responsive to the oscillation drive signal to generate the output signal with a frequency based on the selectable load capacitance. The oscillator driver can include a bandpass filter network with a resonance frequency substantially at the target frequency.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 27, 2020
    Inventors: Ben-yong Zhang, Seong-Ryong Ryu, Ali Kiaei, Ting-Ta Yen, Kai Yiu Tam
  • Patent number: 10651789
    Abstract: A clock oscillator includes with a pullable BAW oscillator to generate an output signal with a target frequency. The BAW oscillator is based on a BAW resonator and voltage-controlled variable load capacitance, responsive to a capacitance control signal to provide a selectable load capacitance. An oscillator driver (such as a differential negative gm transconductance amplifier), is coupled to the BAW oscillator to provide an oscillation drive signal. The BAW oscillator is responsive to the oscillation drive signal to generate the output signal with a frequency based on the selectable load capacitance. The oscillator driver can include a bandpass filter network with a resonance frequency substantially at the target frequency.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: May 12, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ben-yong Zhang, Seong-Ryong Ryu, Ali Kiaei, Ting-Ta Yen, Kai Yiu Tam
  • Publication number: 20180091095
    Abstract: A clock oscillator includes with a pullable BAW oscillator to generate an output signal with a target frequency. The BAW oscillator is based on a BAW resonator and voltage-controlled variable load capacitance, responsive to a capacitance control signal to provide a selectable load capacitance. An oscillator driver (such as a differential negative gm transconductance amplifier), is coupled to the BAW oscillator to provide an oscillation drive signal. The BAW oscillator is responsive to the oscillation drive signal to generate the output signal with a frequency based on the selectable load capacitance. The oscillator driver can include a bandpass filter network with a resonance frequency substantially at the target frequency.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 29, 2018
    Inventors: Ben-yong Zhang, Seong-Ryong Ryu, Ali Kiaei, Ting-Ta Yen, Kai Yiu Tam
  • Publication number: 20170085221
    Abstract: The present disclosure describes a low-power, low-phase-noise (LPLPN) oscillator. The LPLPN oscillator includes a resonator load, an amplifier stage, and a loop gain control circuit. The resonator load is structured to resonate at a primary resonant frequency. The amplifier stage is coupled with the resonator load to develop a loop gain that peaks at the primary resonant frequency. The loop gain control circuit is coupled with the amplifier stage, and it is structured to regulate the loop gain for facilitating the amplifier stage to generate an oscillation signal at the primary resonant frequency and suppress a noise signal at a parasitic parallel resonant frequency (PPRF).
    Type: Application
    Filed: December 1, 2016
    Publication date: March 23, 2017
    Inventors: Seong-Ryong Ryu, Ali Kiaei
  • Patent number: 9543891
    Abstract: The present disclosure describes a low-power, low-phase-noise (LPLPN) oscillator. The LPLPN oscillator includes a resonator load, an amplifier stage, and a loop gain control circuit. The resonator load is structured to resonate at a primary resonant frequency. The amplifier stage is coupled with the resonator load to develop a loop gain that peaks at the primary resonant frequency. The loop gain control circuit is coupled with the amplifier stage, and it is structured to regulate the loop gain for facilitating the amplifier stage to generate an oscillation signal at the primary resonant frequency and suppress a noise signal at a parasitic parallel resonant frequency (PPRF).
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: January 10, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Seong-Ryong Ryu, Ali Kiaei
  • Publication number: 20160301364
    Abstract: The present disclosure describes a low-power, low-phase-noise (LPLPN) oscillator. The LPLPN oscillator includes a resonator load, an amplifier stage, and a loop gain control circuit. The resonator load is structured to resonate at a primary resonant frequency. The amplifier stage is coupled with the resonator load to develop a loop gain that peaks at the primary resonant frequency. The loop gain control circuit is coupled with the amplifier stage, and it is structured to regulate the loop gain for facilitating the amplifier stage to generate an oscillation signal at the primary resonant frequency and suppress a noise signal at a parasitic parallel resonant frequency (PPRF).
    Type: Application
    Filed: April 9, 2015
    Publication date: October 13, 2016
    Inventors: Seong-Ryong Ryu, Ali Kiaei
  • Publication number: 20130196719
    Abstract: A mobile wireless communications device may include a portable housing, and a supply modulator carried by the portable housing. The supply modulator may include an output node, a linear amplifier coupled to the output node, and a switching amplifier also coupled to the output node. The switching amplifier may include at least one sensing transistor configured to sense current output from the linear amplifier and generate a drive voltage, and a hysteretic comparator coupled to the at least one sensing transistor and configured to be driven by the drive voltage. The mobile wireless communications device may also include a radio frequency (RF) power amplifier coupled to the output node of the supply modulator, and a wireless transceiver carried by the portable housing and coupled to the RF power amplifier.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 1, 2013
    Applicant: Research In Motion Limited
    Inventors: Khurram MUHAMMAD, Seong-Ryong Ryu
  • Patent number: 8494468
    Abstract: A mobile wireless communications device may include a portable housing, and a supply modulator carried by the portable housing. The supply modulator may include an output node, a linear amplifier coupled to the output node, and a switching amplifier also coupled to the output node. The switching amplifier may include at least one sensing transistor configured to sense current output from the linear amplifier and generate a drive voltage, and a hysteretic comparator coupled to the at least one sensing transistor and configured to be driven by the drive voltage. The mobile wireless communications device may also include a radio frequency (RF) power amplifier coupled to the output node of the supply modulator, and a wireless transceiver carried by the portable housing and coupled to the RF power amplifier.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: July 23, 2013
    Assignee: Research In Motion Limited
    Inventors: Khurram Muhammad, Seong-Ryong Ryu