Patents by Inventor Seong-Woo Kang

Seong-Woo Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7298592
    Abstract: Provided is an actuator of a disk drive to move a read/write head, for recording and reproducing data, to a predetermined position on a disk. The actuator includes an actuator pivot installed on a base member of the disk drive, a swing arm that is rotatably coupled to the actuator pivot and has a suspension supporting the head at a leading end portion of the swing arm, a coil support portion provided at a rear end portion of the swing arm, a VCM coil coupled to the coil support portion and having four sections having respective particular directions, and magnets arranged to face the VCM coil and having four poles respectively corresponding to the four sections of the VCM coil.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: November 20, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Haeng-soo Lee, Seong-woo Kang, Young-hoon Kim
  • Patent number: 7283331
    Abstract: The invention includes sliders provided with indented surfaces, reducing the roll center for head gimbal assemblies below the effective thickness of the slider. Head gimbal assemblies built with these sliders may reduce off-track displacements induced by disk vibration. The load beam gimbal may contact the indented surface, creating a slider roll center less than the slider thickness. Alternatively, the sliders may include a slider contact cover interfacing to the load beam forming the gimbal. The slider contact covers may couple with the slider through an indented surface located closer than the slider thickness. These may have a negative slider roll center. The invention includes actuator arms, actuator assemblies, and hard disk drives including these head gimbal assemblies. The invention includes making the invention's sliders, head gimbal assemblies, actuator arms, actuator assemblies, and hard disk drives. The invention includes the products of these processes.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: October 16, 2007
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Dong-Ho Oh, Seong-Woo Kang, Haeng-Soo Lee, Frank Ivan Morris, Momo K. Boljanovic, Young-Hoon Kim
  • Publication number: 20070064335
    Abstract: Improved head gimbal assemblies reducing TMR (Track Mis-Registration) in a hard disk drive are provided. These head gimbal assemblies are as mechanically simple as contemporary head gimbal assemblies, support parallel flying sliders over flat disk surfaces, and reduce TMR induced by disk vibration. They are easier to build, more reliable, and cost less to make, than other known approaches at comparable track densities and rotational rates. The improved head gimbal assemblies include three sets of mechanisms for moving the slider parallel the disk surface, when the disk surface is flat, and radially moving the slider toward the track, when the disk surface is bent. The first and third mechanisms as well as the second and third mechanisms can be used together in a head gimbal assembly. An improved and distinctive servo-controller scheme resulting in an overall improvement in PES performance, particularly when applied to hard disk drives employing the invention's TMR reduction mechanisms.
    Type: Application
    Filed: November 14, 2006
    Publication date: March 22, 2007
    Inventors: Dong-Ho Oh, Seong-Woo Kang, Yun-Sik Han, Young-Hoon Kim, Myeong-Eop Kim, Tae-Yeon Hwang, Jae-Won Kim
  • Patent number: 7136260
    Abstract: Improved head gimbal assemblies reducing TMR (Track Mis-Registration) in a hard disk drive are provided. These head gimbal assemblies are as mechanically simple as contemporary head gimbal assemblies, support parallel flying sliders over flat disk surfaces, and reduce TMR induced by disk vibration. They are easier to build, more reliable, and cost less to make, than other known approaches at comparable track densities and rotational rates. The improved head gimbal assemblies include three sets of mechanisms for moving the slider parallel the disk surface, when the disk surface is flat, and radially moving the slider toward the track, when the disk surface is bent. The first and third mechanisms as well as the second and third mechanisms can be used together in a head gimbal assembly. An improved and distinctive servo-controller scheme resulting in an overall improvement in PES performance, particularly when applied to hard disk drives employing the invention's TMR reduction mechanisms.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: November 14, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Ho Oh, Seong-Woo Kang, Yun-Sik Han, Young-Hoon Kim, Myeong-Eop Kim, Tae-Yeon Hwang, Jae-Won Kim
  • Publication number: 20060187571
    Abstract: The invention applies to servo controllers for at least the voice coil motor of a hard disk drive. Today, many control algorithms require 80 to 90 percent of the sampling period to complete their calculation of the next control, making computation time delay no longer negligible. The invention accommodates the transport delay, such as computation time delay, into the state estimator and into the whole control system. Experimental results using a commercial hard drive, as well as simulation results, show that the invention's method effectively improves the hard disk drive control system stability by increasing the phase margin and gain margin. The invention includes the method of operating the servo-controller, as well as the apparatus implementing that method. The invention also includes hard disk drives containing servo-controllers implementing the method, and program systems residing in accessibly coupled memory to a computer within the servo controller implementing the method.
    Type: Application
    Filed: April 3, 2006
    Publication date: August 24, 2006
    Inventors: Young-Hoon Kim, Sang Chu, Seong-Woo Kang, Dong-Ho Oh, Yun-Sik Han, Tae Hwang
  • Patent number: 7031095
    Abstract: The invention applies to servo controllers for at least the voice coil motor of a hard disk drive. Today, many control algorithms require 80 to 90 percent of the sampling period to complete their calculation of the next control, making computation time delay no longer negligible. The invention accommodates the transport delay, such as computation time delay, into the state estimator and into the whole control system. Experimental results using a commercial hard drive, as well as simulation results, show that the invention's method effectively improves the hard disk drive control system stability by increasing the phase margin and gain margin. The invention includes the method of operating the servo-controller, as well as the apparatus implementing that method. The invention also includes hard disk drives containing servo-controllers implementing the method, and program systems residing in accessibly coupled memory to a computer within the servo controller implementing the method.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: April 18, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Hoon Kim, Sang Hoon Chu, Seong-Woo Kang, Dong-Ho Oh, Yun-Sik Han, Tae Yeon Hwang
  • Patent number: 7002773
    Abstract: Aerodynamic forces contribute to disk and actuator vibration leading to track positioning errors in storage devices such as hard disk drives. The invention provides a variety of dampening mechanisms and a method of dampening to alleviate these problems in single disk storage devices. This includes disk drives of at most 13 millimeters in height.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: February 21, 2006
    Assignee: Samsung Electronics Co. Ltd.
    Inventors: Seong Woo Kang, Seong Hoon Kim, Gregory Tran, Vincent Nguyen, Scott Tran, Nikollay Ivanov, Joe Bragg
  • Patent number: 6999262
    Abstract: A servo writer that writes servo information onto a disk of a hard disk drive. The servo writer can write servo information onto a disk of a hard disk drive while the disk is within an inner chamber of a housing. The rotating disk creates a flow of fluid within the inner chamber. The disk is rotated during the servo writing process. The density of a fluid medium within the inner chamber is controlled by a medium control system so that the density of the medium is less than the density of air at one atmosphere. Lowering the density decreases the amplitude of vibrational forces created by the flow of fluid. Decreasing the amplitude reduces errors in the servo writing process. The density can be reduced by pulling a vacuum within the inner chamber. The density can also be reduced by filling the inner chamber with a gas such as helium that has a lower density than air.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: February 14, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-Sik Han, Seong-Woo Kang, Tho Pham, Young-Hoon Kim, Edward Aguilar, Dong-Ho Oh, Myeong-Eop Kim
  • Publication number: 20060023340
    Abstract: The invention applies to servo controllers for at least the voice coil motor of a hard disk drive. Today, many control algorithms require 80 to 90 percent of the sampling period to complete their calculation of the next control, making computation time delay no longer negligible. The invention accommodates the transport delay, such as computation time delay, into the state estimator and into the whole control system. Experimental results using a commercial hard drive, as well as simulation results, show that the invention's method effectively improves the hard disk drive control system stability by increasing the phase margin and gain margin. The invention includes the method of operating the servo-controller, as well as the apparatus implementing that method. The invention also includes hard disk drives containing servo-controllers implementing the method, and program systems residing in accessibly coupled memory to a computer within the servo controller implementing the method.
    Type: Application
    Filed: July 29, 2004
    Publication date: February 2, 2006
    Inventors: Young-Hoon Kim, Sang Chu, Seong-Woo Kang, Dong-Ho Oh, Yun-Sik Han, Tae Hwang
  • Publication number: 20050270698
    Abstract: The invention includes sliders provided with indented surfaces, reducing the roll center for head gimbal assemblies below the effective thickness of the slider. Head gimbal assemblies built with these sliders may reduce off-track displacements induced by disk vibration. The load beam gimbal may contact the indented surface, creating a slider roll center less than the slider thickness. Alternatively, the sliders may include a slider contact cover interfacing to the load beam forming the gimbal. The slider contact covers may couple with the slider through an indented surface located closer than the slider thickness. These may have a negative slider roll center. The invention includes actuator arms, actuator assemblies, and hard disk drives including these head gimbal assemblies. The invention includes making the invention's sliders, head gimbal assemblies, actuator arms, actuator assemblies, and hard disk drives. The invention includes the products of these processes.
    Type: Application
    Filed: June 4, 2004
    Publication date: December 8, 2005
    Inventors: Dong-Ho Oh, Seong-Woo Kang, Haeng-Soo Lee, Frank Morris, Momo Boljanovic, Young-Hoon Kim
  • Publication number: 20050248876
    Abstract: A hard disk drive that includes an optical pick-up coupled to a head of a hard disk assembly (“HDA”). The head is located adjacent to a disk. The optical pick-up can sense the surface of the disk by detecting light reflected from the surface. The optical pick-up is coupled to a particle circuit that can distinguish between an embedded particle and a floating particle from the reflected light.
    Type: Application
    Filed: May 10, 2004
    Publication date: November 10, 2005
    Inventors: Haesung Kwon, Hyung Lee, Seong-Woo Kang, Yun-Sik Han
  • Patent number: 6961207
    Abstract: Aerodynamic forces contribute to disk and actuator vibration leading to track positioning errors in storage devices such as hard disk drives. The invention provides a variety of dampening mechanisms and a method of dampening to alleviate these problems.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: November 1, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong Woo Kang, Seong Hoon Kim, Gregory Tran, Vincent Nguyen, Scott Tam, Nikollay Ivanov, Joe Bragg
  • Patent number: 6958879
    Abstract: An improved and distinctive servo-controller scheme resulting in an overall improvement in PES performance, particularly when applied to hard disk drives employing the invention's TMR reduction mechanisms. The servo-controllers trade off gain in the disk vibration frequency range, in favor of, increased rejection of low frequency disturbances. This leads to the lowest PES statistics, when applied to hard disk drives with the TMR reduction mechanisms of the invention. Improved head gimbal assemblies reducing TMR (Track Mis-Registration) in a hard disk drive are provided. These head gimbal assemblies are as mechanically simple as contemporary head gimbal assemblies, support parallel flying sliders over flat disk surfaces, and reduce TMR induced by disk vibration. They are easier to build, more reliable, and cost less to make, than other known approaches at comparable track densities and rotational rates.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: October 25, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Ho Oh, Seong-Woo Kang, Yun-Sik Han, Young-Hoon Kim, Myeong-Eop Kim, Tae-Yeon Hwang, Jae-Won Kim
  • Publication number: 20050207055
    Abstract: An improved and distinctive servo-controller scheme resulting in an overall improvement in PES performance, particularly when applied to hard disk drives employing the invention's TMR reduction mechanisms. The servo-controllers trade off gain in the disk vibration frequency range, in favor of, increased rejection of low frequency disturbances. This leads to the lowest PES statistics, when applied to hard disk drives with the TMR reduction mechanisms of the invention. Improved head gimbal assemblies reducing TMR (Track Mis-Registration) in a hard disk drive are provided. These head gimbal assemblies are as mechanically simple as contemporary head gimbal assemblies, support parallel flying sliders over flat disk surfaces, and reduce TMR induced by disk vibration. They are easier to build, more reliable, and cost less to make, than other known approaches at comparable track densities and rotational rates.
    Type: Application
    Filed: May 10, 2005
    Publication date: September 22, 2005
    Inventors: Dong-Ho Oh, Seong-Woo Kang, Yun-Sik Han, Young-Hoon Kim, Myeong-Eop Kim, Tae-Yeon Hwang, Jae-Won Kim
  • Patent number: 6947252
    Abstract: A hard disk drive that includes a wave stringer. The wave stringer can attenuate energy which propagates through a base plate of the disk drive. The wave stringer may be designed by initially analyzing propagation patterns of both acoustic and shock waves applied to the drive. The wave stringer is then designed, constructed and assembled to the disk drive to attenuate critical frequencies at weak points of the disk drive. The wave stringer may have a plurality of ribs designed to vary the mechanical impedance of the drive to attenuate the propagated energy.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: September 20, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-Woo Kang, Tae-Yeon Hwang, Yun-Dik Han, Young Son, Woocheol Jeong
  • Patent number: 6922303
    Abstract: A hard disk drive that has a reaction mass and a transducer that can be used to move and/or sense the acceleration of an actuator arm of the drive. The transducer is coupled to a disk controller that can provide output signals which induce a movement of the reaction mass. Movement of the reaction mass will cause a responsive movement of a head(s) coupled to the actuator arm. The transducer can also provide input signals to the controller that correspond to an acceleration of the actuator arm. The acceleration signal can provide force feedback for a servo system of the drive.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: July 26, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dan Blick, Seong-Woo Kang
  • Patent number: 6920018
    Abstract: Improved head gimbal assemblies reducing TMR (Track Mis-Registration) in a hard disk drive are provided. These head gimbal assemblies are as mechanically simple as contemporary head gimbal assemblies, support parallel flying sliders over flat disk surfaces, and reduce TMR' induced by disk vibration. They are easier to build, more reliable, and cost less to make, than other known approaches at comparable track densities and rotational rates. The improved head gimbal assemblies include three sets of mechanisms moving the slider parallel the disk surface, when the disk surface is flat, and radially moving the slider toward the track, when the disk surface is bent. The first and third mechanisms as well as the second and third mechanisms can be used together in a head gimbal assembly. An improved and distinctive servo-controller scheme resulting in an overall improvement in PES performance, particularly when applied to hard disk drives employing the invention's TMR reduction mechanisms.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: July 19, 2005
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Dong-Ho Oh, Seong-Woo Kang, Yun-Sik Han, Young-Hoon Kim, Myeong-Eop Kim, Tae-Yeon Hwang, Jae-Won Kim
  • Publication number: 20050128628
    Abstract: A servo writer that writes servo information onto a disk of a hard disk drive. The servo writer can write servo information onto a disk of a hard disk drive while the disk is within an inner chamber of a housing. The rotating disk creates a flow of fluid within the inner chamber. The disk is rotated during the servo writing process. The density of a fluid medium within the inner chamber is controlled by a medium control system so that the density of the medium is less than the density of air at one atmosphere. Lowering the density decreases the amplitude of vibrational forces created by the flow of fluid. Decreasing the amplitude reduces errors in the servo writing process. The density can be reduced by pulling a vacuum within the inner chamber. The density can also be reduced by filling the inner chamber with a gas such as helium that has a lower density than air.
    Type: Application
    Filed: December 10, 2003
    Publication date: June 16, 2005
    Inventors: Yun-Sik Han, Seong-Woo Kang, Tho Pham, Young-Hoon Kim, Edward Aguilar, Dong-Ho Oh, Myeong-Eop Kim
  • Publication number: 20050111140
    Abstract: Provided is an actuator of a disk drive to move a read/write head, for recording and reproducing data, to a predetermined position on a disk. The actuator includes an actuator pivot installed on a base member of the disk drive, a swing arm that is rotatably coupled to the actuator pivot and has a suspension supporting the head at a leading end portion of the swing arm, a coil support portion provided at a rear end portion of the swing arm, a VCM coil coupled to the coil support portion and having four sections having respective particular directions, and magnets arranged to face the VCM coil and having four poles respectively corresponding to the four sections of the VCM coil.
    Type: Application
    Filed: May 27, 2004
    Publication date: May 26, 2005
    Inventors: Haeng-soo Lee, Seong-woo Kang, Young-hoon Kim
  • Publication number: 20050007701
    Abstract: Improved head gimbal assemblies reducing TMR (Track Mis-Registration) in a hard disk drive are provided. These head gimbal assemblies are as mechanically simple as contemporary head gimbal assemblies, support parallel flying sliders over flat disk surfaces, and reduce TMR induced by disk vibration. They are easier to build, more reliable, and cost less to make, than other known approaches at comparable track densities and rotational rates. The improved head gimbal assemblies include three sets of mechanisms moving the slider parallel the disk surface, when the disk surface is flat, and radially moving the slider toward the track, when the disk surface is bent. The first and third mechanisms as well as the second and third mechanisms can be used together in a head gimbal assembly. An improved and distinctive servo-controller scheme resulting in an overall improvement in PES performance, particularly when applied to hard disk drives employing the invention's TMR reduction mechanisms.
    Type: Application
    Filed: July 10, 2003
    Publication date: January 13, 2005
    Inventors: Dong-Ho Oh, Seong-Woo Kang, Yun-Sik Han, Young-Hoon Kim, Myeong-Eop Kim, Tae-Yeon Hwang, Jae-Won Kim