Patents by Inventor Sepehr Kiani

Sepehr Kiani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240132958
    Abstract: This disclosure provides methods and systems for single-cell, multi-omic analysis of target cells without microfluidic devices. The disclosed methods involve the use of template particles to template the formation of monodisperse droplets to generally capture a single target cell from a population of cells in an encapsulation, derive a plurality of distinct mRNA molecules from the single target cell, and quantify the distinct mRNA molecules to generate an expression profile. Nucleic-acid-tagged antibody conjugates are used for simultaneous proteomic analysis along with the gene expression profiling.
    Type: Application
    Filed: January 4, 2024
    Publication date: April 25, 2024
    Inventor: Sepehr Kiani
  • Publication number: 20240043940
    Abstract: The disclosure provides methods and systems of analyzing single cells by simultaneously separating cells into monodisperse droplets and tagging each nucleic acid molecule from the cells with barcodes unique to each droplet. The methods and systems combine template particles with a plurality of single cells in a tube, generate in the tube monodispersed droplets encapsulating a single one of the template particles and a single one of the single cells, release nucleic acid molecules from the single cells and provide each nucleic acid molecule with a barcode unique to the respective droplet. The nucleic acid molecules can then be analyzed by any known method, for example by sequencing the nucleic acid molecules.
    Type: Application
    Filed: September 5, 2023
    Publication date: February 8, 2024
    Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Sepehr Kiani
  • Patent number: 11866782
    Abstract: This disclosure provides methods and systems for single-cell, multi-omic analysis of target cells without microfluidic devices. The disclosed methods involve the use of template particles to template the formation of monodisperse droplets to generally capture a single target cell from a population of cells in an encapsulation, derive a plurality of distinct mRNA molecules from the single target cell, and quantify the distinct mRNA molecules to generate an expression profile. Nucleic-acid-tagged antibody conjugates are used for simultaneous proteomic analysis along with the gene expression profiling.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: January 9, 2024
    Assignee: Fluent Biosciences Inc.
    Inventor: Sepehr Kiani
  • Patent number: 11827936
    Abstract: This disclosure provides methods and systems for single-cell analysis, including single-cell transcriptome analysis, of target cells without microfluidic devices. The disclosed methods involve the use of template particles to template the formation of monodisperse droplets to generally capture a single target cell from a population of cells in an encapsulation, derive a plurality of distinct mRNA molecules from the single target cell, and quantify the distinct mRNA molecules to generate an expression profile.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: November 28, 2023
    Assignee: Fluent Biosciences Inc.
    Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Christopher D'amato, Sepehr Kiani
  • Patent number: 11773452
    Abstract: The disclosure provides methods and systems of analyzing single cells by simultaneously separating cells into monodisperse droplets and tagging each nucleic acid molecule from the cells with barcodes unique to each droplet. The methods and systems combine template particles with a plurality of single cells in a tube, generate in the tube monodispersed droplets encapsulating a single one of the template particles and a single one of the single cells, release nucleic acid molecules from the single cells and provide each nucleic acid molecule with a barcode unique to the respective droplet. The nucleic acid molecules can then be analyzed by any known method, for example by sequencing the nucleic acid molecules.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: October 3, 2023
    Assignee: Fluent Biosciences Inc.
    Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Sepehr Kiani
  • Publication number: 20230141825
    Abstract: The invention provides methods and systems for drug screening by segregating single cells into droplets simultaneously and providing candidate compound to the single cells to measure cellular response. Methods of the present invention combine template particles with a plurality of single cells in a tube, generate in the tube monodispersed droplets simultaneously that encapsulate a single one of the template particles and single one of the single cells, provide to the single cells one or more candidate compounds, and measure a cellular response to the one or more candidate compounds.
    Type: Application
    Filed: November 11, 2022
    Publication date: May 11, 2023
    Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Sepehr Kiani
  • Publication number: 20230136755
    Abstract: The invention provides devices for improving assay protocol compliance, reproducibility, and sensitivity. In particular, the devices of the present invention are tailored to certain single-cell sequencing assays, including single-cell RNA sequencing assays that utilize pre-templated instant partitions (PIPs) templates, wherein such devices provide improved means of holding tubes stationary while performing sample preparation, provide reproducible volume removal from tubes, allow for improved magnetic separation of analytes from buffers, and provide reproducible centrifugation of tubes.
    Type: Application
    Filed: November 3, 2022
    Publication date: May 4, 2023
    Inventors: Yi Xue, James Wang, Sepehr Kiani, Corey Alicchio
  • Publication number: 20230019117
    Abstract: This disclosure provides a decentralized workflow for analyzing single cell gene expression. The workflow makes use of pre-templated instant partitions to segregate cells into separate compartments to individually capture and barcode RNA from single cells in a massively parallel single tube format. The workflow includes steps for processing the RNA from the single cells for sequencing. Separate portions of the decentralized workflow are performed by a research lab and a core facility, allowing increased flexibility in time and location of protocol steps.
    Type: Application
    Filed: July 14, 2022
    Publication date: January 19, 2023
    Inventors: Sepehr Kiani, Ram Santhanam, Robert Meltzer, Kristina Fontanez
  • Publication number: 20230008992
    Abstract: The invention provides devices for generating pre-templated instant partitions. The devices may include a shearing mechanism, such as a vortexer, a holder for holding a vessel containing a liquid onto the vortexer, and a temperature control unit for modulating a temperature of the vessel by convection. The invention also provides methods of using such devices to process analyte inside the pre-templated instant partitions.
    Type: Application
    Filed: July 8, 2022
    Publication date: January 12, 2023
    Inventors: Sepehr Kiani, Corey Alicchio
  • Patent number: 11512337
    Abstract: The invention provides methods and systems for drug screening by segregating single cells into droplets simultaneously and providing candidate compound to the single cells to measure cellular response. Methods of the present invention combine template particles with a plurality of single cells in a tube, generate in the tube monodispersed droplets simultaneously that encapsulate a single one of the template particles and single one of the single cells, provide to the single cells one or more candidate compounds, and measure a cellular response to the one or more candidate compounds.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: November 29, 2022
    Assignee: FLUENT BIOSCIENCES INC.
    Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Sepehr Kiani
  • Publication number: 20220372561
    Abstract: This invention releases to systems and methods for detecting the presence and quantity of a target nucleic acid in a sample using dPCR and PIP encapsulated monodisperse droplets.
    Type: Application
    Filed: May 18, 2022
    Publication date: November 24, 2022
    Applicant: Fluent Biosciences Inc.
    Inventors: Sepehr Kiani, Aaron Weber, Robert Meltzer
  • Publication number: 20220372567
    Abstract: This disclosure provides methods and systems for single-extracellular (EV), multi-omic analysis of target EVs without microfluidic devices. The disclosed methods involve the use of template particles to template the formation of monodisperse droplets to generally capture a single target EV from a population of EVs in an encapsulation, derive a plurality of distinct mRNA molecules from the single target EV, and quantify the distinct mRNA molecules to generate an expression profile. Nucleic-acid-tagged antibody conjugates are used for simultaneous proteomic analysis along with the gene expression profiling, which enables classification of an EV in a sample.
    Type: Application
    Filed: May 18, 2022
    Publication date: November 24, 2022
    Inventors: Robert Meltzer, Catherine Kugler, Yi Xue, Kristina Fontanez, Sepehr Kiani, Mehrtash Babadi
  • Publication number: 20220267761
    Abstract: Methods to emulsify cells and/or mRNA with reverse transcriptase at a temperature such that the reverse transcriptase begins making cDNA during the emulsification
    Type: Application
    Filed: May 10, 2022
    Publication date: August 25, 2022
    Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Christopher D'amato, Sepehr Kiani
  • Publication number: 20220235416
    Abstract: This disclosure provides methods and systems for single-cell analysis, including single-cell transcriptome analysis, of target cells without microfluidic devices. The disclosed methods involve the use of template particles to template the formation of monodisperse droplets to generally capture a single target cell from a population of cells in an encapsulation, derive a plurality of distinct mRNA molecules from the single target cell, and quantify the distinct mRNA molecules to generate an expression profile.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Christopher D'amato, Sepehr Kiani
  • Publication number: 20210381064
    Abstract: The disclosure provides methods and systems of analyzing single cells by simultaneously separating cells into monodisperse droplets and tagging each nucleic acid molecule from the cells with barcodes unique to each droplet. The methods and systems combine template particles with a plurality of single cells in a tube, generate in the tube monodispersed droplets encapsulating a single one of the template particles and a single one of the single cells, release nucleic acid molecules from the single cells and provide each nucleic acid molecule with a barcode unique to the respective droplet. The nucleic acid molecules can then be analyzed by any known method, for example by sequencing the nucleic acid molecules.
    Type: Application
    Filed: August 20, 2021
    Publication date: December 9, 2021
    Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Sepehr Kiani
  • Publication number: 20210332432
    Abstract: This disclosure provides methods and systems for single-cell, multi-omic analysis of target cells without microfluidic devices. The disclosed methods involve the use of template particles to template the formation of monodisperse droplets to generally capture a single target cell from a population of cells in an encapsulation, derive a plurality of distinct mRNA molecules from the single target cell, and quantify the distinct mRNA molecules to generate an expression profile. Nucleic-acid-tagged antibody conjugates are used for simultaneous proteomic analysis along with the gene expression profiling.
    Type: Application
    Filed: March 16, 2021
    Publication date: October 28, 2021
    Inventor: Sepehr Kiani
  • Publication number: 20210301354
    Abstract: The disclosure provides methods and systems for multiplex viral detection using monodisperse emulsion droplets and template particles.
    Type: Application
    Filed: March 24, 2021
    Publication date: September 30, 2021
    Inventor: Sepehr Kiani
  • Patent number: 11104961
    Abstract: The disclosure provides methods and systems of analyzing single cells by simultaneously separating cells into monodisperse droplets and tagging each nucleic acid molecule from the cells with barcodes unique to each droplet. The methods and systems combine template particles with a plurality of single cells in a tube, generate in the tube monodispersed droplets encapsulating a single one of the template particles and a single one of the single cells, release nucleic acid molecules from the single cells and provide each nucleic acid molecule with a barcode unique to the respective droplet. The nucleic acid molecules can then be analyzed by any known method, for example by sequencing the nucleic acid molecules.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: August 31, 2021
    Assignee: Fluent Biosciences Inc.
    Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Sepehr Kiani
  • Publication number: 20210215591
    Abstract: The invention provides devices that generate monodisperse droplets from a bulk liquid. The devices include a shearing mechanism, a holder for a vessel containing a liquid, and an optical system that transmit light to, and detects light from, liquid in the vessel. The invention also provides methods of using such devices to produce monodisperse droplets.
    Type: Application
    Filed: January 12, 2021
    Publication date: July 15, 2021
    Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Sepehr Kiani
  • Publication number: 20210214802
    Abstract: The disclosure provides methods and systems of analyzing single cells by simultaneously separating cells into monodisperse droplets and tagging each nucleic acid molecule from the cells with barcodes unique to each droplet. The methods and systems combine template particles with a plurality of single cells in a tube, generate in the tube monodispersed droplets encapsulating a single one of the template particles and a single one of the single cells, release nucleic acid molecules from the single cells and provide each nucleic acid molecule with a barcode unique to the respective droplet. The nucleic acid molecules can then be analyzed by any known method, for example by sequencing the nucleic acid molecules.
    Type: Application
    Filed: January 12, 2021
    Publication date: July 15, 2021
    Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Sepehr Kiani