Patents by Inventor Serban Motoroiu

Serban Motoroiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10727794
    Abstract: An apparatus includes an amplifier, an input port, a first modulator circuit connected to the input port, and a correction circuit. The correction circuit is configured to determine a common mode voltage of the input port and receive a first clock signal. The correction circuit is further configured to manipulate, based at least in part upon the common mode voltage of the input port, the first clock signal to generate a second clock signal. The second clock signal is produced for the first modulator circuit. The correction circuit is further configured to determine whether the second clock signal is out of phase with a third clock signal, and, based upon a determination that the second clock signal is out of phase with the third clock signal, reset the second clock signal.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: July 28, 2020
    Assignee: MICROCHIP TECHNOLOGY INCORPORATED
    Inventors: Serban Motoroiu, James Nolan
  • Patent number: 10454438
    Abstract: A current feed-back instrumentation amplifier (CFIA) comprises a differential pair with degeneration for amplifying small differential voltages in the presence of large common-mode voltages. The CFIA includes input and feedback transconductors and a chopping modulator circuit that continuously swaps tail current sources between the transconductors. This tail current swapping reduces the contribution to the CFIA's gain error caused by random mismatch between the tail currents of the input and feedback transconductors. The modulator circuit operates on a clock cycle to periodically swap the tail current sources. As a result, even if the tail currents are mismatched, on average the tail currents (transconductor gains) will approximately equal out, and the contribution of the tail current difference to the gain error is canceled out.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: October 22, 2019
    Assignee: Microchip Technology Incorporated
    Inventors: Serban Motoroiu, Jim Nolan
  • Patent number: 10439559
    Abstract: A current feed-back instrumentation amplifier (CFIA) comprises a differential pair with degeneration for amplifying small differential voltages in the presence of large common-mode voltages. The CFIA includes input and feedback transconductors and a trimming circuit that trims the back-bias voltages of the transistors in each transconductor. The trimming circuit includes a plurality of selectable resistors disposed in the signal path of the tail current in each transconductor. Each of the plurality of selectable resistors has a switch coupled to it. When a switch is closed, only the resistors up to the respective switch are in the signal path of the bulk-to-source voltage of the differentially paired transistors. The resistor trimming circuit reduces the mismatch between transconductances of the respective differential pair transistors, in turn reducing mismatch of the overall transconductances of the transconductors, and thereby reducing the CFIA's gain error.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: October 8, 2019
    Assignee: Microchip Technology Incorporated
    Inventors: Serban Motoroiu, Jim Nolan
  • Publication number: 20190229683
    Abstract: A current feed-back instrumentation amplifier (CFIA) comprises a differential pair with degeneration for amplifying small differential voltages in the presence of large common-mode voltages. The CFIA includes input and feedback transconductors and a trimming circuit that trims the back-bias voltages of the transistors in each transconductor. The trimming circuit includes a plurality of selectable resistors disposed in the signal path of the tail current in each transconductor. Each of the plurality of selectable resistors has a switch coupled to it. When a switch is closed, only the resistors up to the respective switch are in the signal path of the bulk-to-source voltage of the differentially paired transistors. The resistor trimming circuit reduces the mismatch between transconductances of the respective differential pair transistors, in turn reducing mismatch of the overall transconductances of the transconductors, and thereby reducing the CFIA's gain error.
    Type: Application
    Filed: April 1, 2019
    Publication date: July 25, 2019
    Applicant: Microchip Technology Incorporated
    Inventors: Serban Motoroiu, Jim Nolan
  • Publication number: 20190149108
    Abstract: An apparatus includes an amplifier, an input port, a first modulator circuit connected to the input port, and a correction circuit. The correction circuit is configured to determine a common mode voltage of the input port and receive a first clock signal. The correction circuit is further configured to manipulate, based at least in part upon the common mode voltage of the input port, the first clock signal to generate a second clock signal. The second clock signal is produced for the first modulator circuit. The correction circuit is further configured to determine whether the second clock signal is out of phase with a third clock signal, and, based upon a determination that the second clock signal is out of phase with the third clock signal, reset the second clock signal.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 16, 2019
    Applicant: Microchip Technology Incorporated
    Inventors: Serban Motoroiu, James Nolan
  • Patent number: 10250198
    Abstract: A current feed-back instrumentation amplifier (CFIA) comprises a differential pair with degeneration for amplifying small differential voltages in the presence of large common-mode voltages. The CFIA includes input and feedback transconductors and a trimming circuit that trims the back-bias voltages of the transistors in each transconductor. The trimming circuit includes a plurality of selectable resistors disposed in the signal path of the tail current in each transconductor. Each of the plurality of selectable resistors has a switch coupled to it. When a switch is closed, only the resistors up to the respective switch are in the signal path of the bulk-to-source voltage of the differentially paired transistors. The resistor trimming circuit reduces the mismatch between transconductances of the respective differential pair transistors, in turn reducing mismatch of the overall transconductances of the transconductors, and thereby reducing the CFIA's gain error.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: April 2, 2019
    Assignee: MICROCHIP TECHNOLOGY INCORPORATED
    Inventors: Serban Motoroiu, Jim Nolan
  • Publication number: 20180323762
    Abstract: A current feed-back instrumentation amplifier (CFIA) comprises a differential pair with degeneration for amplifying small differential voltages in the presence of large common-mode voltages. The CFIA includes input and feedback transconductors and a chopping modulator circuit that continuously swaps tail current sources between the transconductors. This tail current swapping reduces the contribution to the CFIA's gain error caused by random mismatch between the tail currents of the input and feedback transconductors. The modulator circuit operates on a clock cycle to periodically swap the tail current sources. As a result, even if the tail currents are mismatched, on average the tail currents (transconductor gains) will approximately equal out, and the contribution of the tail current difference to the gain error is canceled out.
    Type: Application
    Filed: February 21, 2018
    Publication date: November 8, 2018
    Applicant: Microchip Technology Incorporated
    Inventors: Serban Motoroiu, Jim Nolan
  • Publication number: 20180323748
    Abstract: A current feed-back instrumentation amplifier (CFIA) comprises a differential pair with degeneration for amplifying small differential voltages in the presence of large common-mode voltages. The CFIA includes input and feedback transconductors and a trimming circuit that trims the back-bias voltages of the transistors in each transconductor. The trimming circuit includes a plurality of selectable resistors disposed in the signal path of the tail current in each transconductor. Each of the plurality of selectable resistors has a switch coupled to it. When a switch is closed, only the resistors up to the respective switch are in the signal path of the bulk-to-source voltage of the differentially paired transistors. The resistor trimming circuit reduces the mismatch between transconductances of the respective differential pair transistors, in turn reducing mismatch of the overall transconductances of the transconductors, and thereby reducing the CFIA's gain error.
    Type: Application
    Filed: February 2, 2018
    Publication date: November 8, 2018
    Applicant: Microchip Technology Incorporated
    Inventors: Serban Motoroiu, Jim Nolan