Patents by Inventor Serge Biesemans

Serge Biesemans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230197514
    Abstract: The disclosure relates to a metallization process for an integrated circuit. One example metallization process includes a method for forming an integrated circuit that includes providing a semiconductor structure having two transistor structures, a gate structure, electrically conductive contacts, a first electrically conductive line, a first electrically conductive via, a second electrically conductive via.
    Type: Application
    Filed: December 15, 2022
    Publication date: June 22, 2023
    Inventors: Victor Hugo Vega Gonzalez, Bilal Chehab, Julien Ryckaert, Zsolt Tokei, Serge Biesemans, Naoto Horiguchi
  • Patent number: 10438806
    Abstract: Techniques herein include methods for selectively modifying chemical properties of organosilicates including periodic mesoporous organosilicates (PMOs) in situ for use in fabrication of semiconductor devices. With techniques herein, such materials are manipulated in their chemical properties after deposition and can accordingly be used as sacrificial patterning films and/or as patterning enabling materials. Using selective treatments such as annealing, curing, plasma exposure, and silylation, chemical properties such as etch resistance and hydrophobicity can be changed to enable a given patterning operation. A given film can be etch resistant for one patterning operation, and then changed to be etch removable for a subsequent patterning operation.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: October 8, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Kathleen Nafus, Serge Biesemans
  • Publication number: 20180315612
    Abstract: Techniques herein include methods for selectively modifying chemical properties of organosilicates including periodic mesoporous organosilicates (PMOs) in situ for use in fabrication of semiconductor devices. With techniques herein, such materials are manipulated in their chemical properties after deposition and can accordingly be used as sacrificial patterning films and/or as patterning enabling materials. Using selective treatments such as annealing, curing, plasma exposure, and silylation, chemical properties such as etch resistance and hydrophobicity can be changed to enable a given patterning operation. A given film can be etch resistant for one patterning operation, and then changed to be etch removable for a subsequent patterning operation.
    Type: Application
    Filed: April 27, 2018
    Publication date: November 1, 2018
    Inventors: Kathleen Nafus, Serge Biesemans
  • Patent number: 7504329
    Abstract: Low work function metals for use as gate electrode in nMOS devices are provided. The low work function metals include alloys of lanthanide(s), metal and semiconductor. In particular, an alloy of nickel-ytterbium (NiYb) is used to fully silicide (FUSI) a silicon gate. The resulting nickel-ytterbium-silicon gate electrode has a work function of about 4.22 eV.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: March 17, 2009
    Assignees: Interuniversitair Microelektronica Centrum (IMEC), National University of Singapore (NUS), Texas Instruments Incorporated
    Inventors: HongYu Yu, Chen JingDe, Li Mingfu, Dim-Lee Kwong, Serge Biesemans, Jorge Adrian Kittl
  • Publication number: 20080191286
    Abstract: The present disclosure provides a dual workfunction semiconductor device and a method for manufacturing a dual workfunction semiconductor device. The method comprises providing a device on a first region and a device on a second region of a substrate. According to embodiments described herein, the method includes providing a dielectric layer onto the first and second region of the substrate, the dielectric layer on the first region being integrally deposited with the dielectric layer on the second region, and providing a gate electrode on top of the dielectric layer on both the first and second regions, the gate electrode on the first region being integrally deposited with the gate electrode on the second region.
    Type: Application
    Filed: January 10, 2008
    Publication date: August 14, 2008
    Applicants: INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM (IMEC), TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shou-Zen Chang, Hong Yu Yu, Anabela Veloso, Rita Vos, Stefan Kubicek, Serge Biesemans, Raghunath Singanamalla, Anne Lauwers, Bart Onsia
  • Publication number: 20080022237
    Abstract: A method for calibrating a software model for a given structure of interest for a variable imposed by an adjacent structure. First determine the spatial extent of the variable imposed by the adjacent structure. Then assign a value to the spatial extent, which varies as a function of distance from the adjacent structure to the given structure. Finally, attach that value to the model of the given structure.
    Type: Application
    Filed: October 3, 2007
    Publication date: January 24, 2008
    Inventors: Eric Adler, Serge Biesemans, Micah Galland, Terence Hook, Judith McCullen, Eric Phipps, James Slinkman
  • Patent number: 7302376
    Abstract: A method for calibrating a software model for a given structure of interest for a variable imposed by an adjacent structure. First determine the spatial extent of the variable imposed by the adjacent structure. Then assign a value to the spatial extent, which varies as a function of distance from the adjacent structure to the given structure. Finally, attach that value to the model of the given structure.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: November 27, 2007
    Assignee: International Business Machines Corporation
    Inventors: Eric Adler, Serge Biesemans, Micah S. Galland, Terence B. Hook, Judith H. McCullen, Eric S. Phipps, James A. Slinkman
  • Publication number: 20070023849
    Abstract: A MOSFET comprising a fully germano-silicided gate electrode having a high work function is disclosed. This gate electrode is formed by a self-aligned reaction process between a silicidation metal and a semiconductor material comprising silicon and germanium. Preferably, the fully germano-silicided gate is formed by a reaction between nickel and SiGe. The work function of the fully germano-silicided gate electrode can be tuned.
    Type: Application
    Filed: July 11, 2006
    Publication date: February 1, 2007
    Applicant: Interuniversitair Microelektronica Centrum (IMEC)
    Inventors: HongYu Yu, Serge Biesemans
  • Publication number: 20060286802
    Abstract: Low work function metals for use as gate electrode in nMOS devices are provided. The low work function metals include alloys of lanthanide(s), metal and semiconductor. In particular, an alloy of nickel-ytterbium (NiYb) is used to fully silicide (FUSI) a silicon gate. The resulting nickel-ytterbium-silicon gate electrode has a work function of about 4.22 eV.
    Type: Application
    Filed: May 11, 2006
    Publication date: December 21, 2006
    Inventors: HongYu Yu, Chen JingDe, Li Mingfu, Dim-Lee Kwong, Serge Biesemans, Jorge Kittl
  • Publication number: 20050095831
    Abstract: Under the present invention, a layer of amorphous silicon is formed over a layer of gate dielectric. Over the layer of amorphous silicon, a gate cap dielectric is formed. The layer of amorphous silicon is then confined by at least one spacer, which is deposited under a low temperature process. Once the at least one spacer is in place, the amorphous silicon is exposed to a temperature sufficiently high to convert the amorphous silicon to polysilicon.
    Type: Application
    Filed: November 4, 2003
    Publication date: May 5, 2005
    Applicant: International Business Machines Corporation
    Inventors: Karanam Balasubramanyam, Serge Biesemans, Byeongju Park
  • Patent number: 6884672
    Abstract: Under the present invention, a layer of amorphous silicon is formed over a layer of gate dielectric. Over the layer of amorphous silicon, a gate cap dielectric is formed. The layer of amorphous silicon is then confined by at least one spacer, which is deposited under a low temperature process. Once the at least one spacer is in place, the amorphous silicon is exposed to a temperature sufficiently high to convert the amorphous silicon to polysilicon. By waiting until the amorphous silicon is confined within the at least one spacer before converting it to polysilicon, the variation in gate length is reduced.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: April 26, 2005
    Assignee: International Business Machines Corporation
    Inventors: Karanam Balasubramanyam, Serge Biesemans, Byeongju Park
  • Publication number: 20040034517
    Abstract: A method for calibrating a software model for a given structure of interest for a variable imposed by an adjacent structure. First determine the spatial extent of the variable imposed by the adjacent structure. Then assign a value to the spatial extent, which varies as a function of distance from the adjacent structure to the given structure. Finally, attach that value to the model of the given structure.
    Type: Application
    Filed: February 25, 2003
    Publication date: February 19, 2004
    Applicant: International Business Machines Corporation
    Inventors: Eric Adler, Serge Biesemans, Micah S. Galland, Terence B. Hook, Judith H. McCullen, Eric S. Phipps, James A. Slinkman