Patents by Inventor Serge Francois

Serge Francois has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200336110
    Abstract: Envelope tracking systems for power amplifiers are provided herein. In certain embodiments, an envelope tracker supplies power to a power amplifier that amplifies an RF signal. The envelope tracker includes a multi-level switching circuit that generates an output current based on an envelope signal indicating an envelope of the RF signal. The envelope tracker further includes a combiner that combines a DC voltage with the output current of the multi-level switching circuit to generate a power amplifier supply voltage for the power amplifier. Accordingly, the output current of the multi-level switching circuit and a DC voltage are combined to generate the power amplifier supply voltage. Implementing the envelope tracking system in this manner can provide enhanced efficiency and/or higher bandwidth relative to an envelope tracking system in which a multi-level switching circuit directly outputs a power amplifier supply voltage.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 22, 2020
    Inventors: Serge Francois Drogi, Florinel G. Balteanu, David Richard Pehlke
  • Patent number: 10812023
    Abstract: Disclosed herein are circuits, devices and methods that address challenges associated with power amplifier systems. A power amplifier system includes two or more fast error amplifiers coupled to corresponding power amplifiers. The fast error amplifiers are configured to generate envelope tracking signals based on a signal envelope, the envelope tracking signals modifying a DC-DC regulated voltage from a DC-DC converter to more efficiently operate the power amplifiers. By splitting the envelope tracking between two or more fast error amplifiers and amplification between corresponding two or more power amplifiers, the power, frequency or bandwidth, linearity, signal-to-noise ratio, efficiency, or the like of the power amplifier system can be improved. Wireless communications configurations with such power amplifier systems can provide uplink carrier aggregation and/or cellular signals based on standards and protocols that require increased bandwidth and/or power.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: October 20, 2020
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Florinel G. Balteanu, Serge Francois Drogi, Boshi Jin, Paul T. DiCarlo
  • Patent number: 10804867
    Abstract: Quadrature amplifier having envelope control. In some embodiments, an amplifier system can include a quadrature amplifier having first and second amplifiers configured to amplify first and second signals in quadrature relative to each other, with each of the first and second amplifiers including a cascode stage with input and output transistors arranged in a cascode configuration. The amplifier system can further include an envelope tracking bias circuit coupled to the quadrature amplifier and configured to provide a bias signal to the output transistor of the cascode stage of at least one of the first and second amplifiers.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: October 13, 2020
    Assignee: Skyworks Solutions, Inc.
    Inventors: Philip John Lehtola, Serge Francois Drogi
  • Publication number: 20200259459
    Abstract: Disclosed herein are circuits, devices and methods that address challenges associated with power amplifier systems. A power amplifier system includes two or more fast error amplifiers coupled to corresponding power amplifiers. The fast error amplifiers are configured to generate envelope tracking signals based on a signal envelope, the envelope tracking signals modifying a DC-DC regulated voltage from a DC-DC converter to more efficiently operate the power amplifiers. By splitting the envelope tracking between two or more fast error amplifiers and amplification between corresponding two or more power amplifiers, the power, frequency or bandwidth, linearity, signal-to-noise ratio, efficiency, or the like of the power amplifier system can be improved. Wireless communications configurations with such power amplifier systems can provide uplink carrier aggregation and/or cellular signals based on standards and protocols that require increased bandwidth and/or power.
    Type: Application
    Filed: January 13, 2020
    Publication date: August 13, 2020
    Inventors: Florinel G. Balteanu, Serge Francois Drogi, Boshi Jin, Paul T. DiCarlo
  • Publication number: 20200259458
    Abstract: Fast envelope tracking systems are provided herein. In certain embodiments, an envelope tracking system for a power amplifier includes a switching regulator and a differential error amplifier configured to operate in combination with one another to generate a power amplifier supply voltage for the power amplifier based on an envelope of a radio frequency (RF) signal amplified by the power amplifier. The envelope tracking system further includes a differential envelope amplifier configured to amplify a differential envelope signal to generate a single-ended envelope signal that changes in relation to the envelope of the RF signal. Additionally, the differential error amplifier generates an output current operable to adjust a voltage level of the power amplifier supply voltage based on comparing the single-ended envelope signal to a reference signal.
    Type: Application
    Filed: November 13, 2019
    Publication date: August 13, 2020
    Inventors: Florinel G. Balteanu, Serge Francois Drogi, Sabah Khesbak, Hardik Bhupendra Modi
  • Publication number: 20200162028
    Abstract: Disclosed herein are amplification systems that are dynamically biased based on a signal indicative of an envelope of an input radio-frequency (RF) signal being amplified. The amplification systems include a power converter with an envelope tracker and an RC circuit. The envelope tracker and the RC circuit are configured to generate an envelope-based biasing signal to bias a power amplifier and an envelope-based supply voltage to power the power amplifier.
    Type: Application
    Filed: October 22, 2019
    Publication date: May 21, 2020
    Inventors: Florinel G. BALTEANU, Paul T. DICARLO, Boshi JIN, Serge Francois DROGI
  • Publication number: 20200162030
    Abstract: Envelope tracking systems with modeling for power amplifier supply voltage filtering are provided herein. In certain embodiments, an envelope tracking system includes a supply voltage filter, a power amplifier that receives a power amplifier supply voltage through the supply voltage filter, and an envelope tracker that generates the power amplifier supply voltage. The power amplifier provides amplification to a radio frequency (RF) signal that is generated based on digital signal data, and the envelope tracker generates the power amplifier supply voltage based on an envelope signal corresponding to an envelope of the RF signal. The envelope tracking system further includes digital modeling circuitry that models the supply voltage filter and operates to digitally compensate the digital signal data for effects of the supply voltage filter, such as distortion.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 21, 2020
    Inventors: Serge Francois Drogi, Florinel G. Balteanu, Shayan Farahvash
  • Patent number: 10651802
    Abstract: Envelope trackers providing compensation for power amplifier output load variation are provided herein. In certain configurations, a radio frequency (RF) system includes an antenna, a power amplifier that receives a radio frequency signal and outputs an amplified radio frequency signal to the antenna, a plurality of detectors coupled to the power amplifier and operable to generate a plurality of detection signals, and an envelope tracker that controls a supply voltage of the power amplifier based on an envelope of the radio frequency signal. The envelope tracker processes the plurality of detection signals to generate a load variation detection signal indicating a change in an output load of the power amplifier arising from a change in a voltage standing wave ratio (VSWR) of the antenna. Additionally, the envelope tracker adjusts a gain of the power amplifier based on the load variation detection signal.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: May 12, 2020
    Assignee: Skyworks Solutions, Inc.
    Inventors: Sabah Khesbak, Serge Francois Drogi
  • Patent number: 10615757
    Abstract: High bandwidth envelope trackers are provided herein. In certain embodiments, an envelope tracking system for a power amplifier includes a switching regulator that operates in combination with a high bandwidth amplifier to generate a power amplifier supply voltage for the power amplifier based on an envelope of a radio frequency (RF) signal amplified by the power amplifier. The high bandwidth amplifier includes an output that generates an output current for adjusting the power amplifier supply voltage, a first input that receives a reference signal, and a second input that receives an envelope signal indicating the envelope of the RF signal. The second input has lower input impedance than the first input to provide a rapid transient response and high envelope tracking bandwidth.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: April 7, 2020
    Assignee: Skyworks Solutions, Inc.
    Inventors: Florinel G. Balteanu, Serge Francois Drogi, Sabah Khesbak, Hardik Bhupendra Modi
  • Publication number: 20200099343
    Abstract: Apparatus and methods for envelope tracking systems with automatic mode selection are provided herein. In certain configurations, a power amplifier system includes a power amplifier configured to provide amplification to a radio frequency signal and to receive power from a power amplifier supply voltage, and an envelope tracker including a signal bandwidth detection circuit configured to generate a detected bandwidth signal based on processing an envelope signal corresponding to an envelope of the radio frequency signal. The envelope tracker further includes a switch bank configured to receive a plurality of regulated voltages, a filter configured to filter an output of the switch bank to generate the power amplifier supply voltage, and a mode control circuit configured to control a filtering characteristic of the filter based on the detected bandwidth signal.
    Type: Application
    Filed: September 10, 2019
    Publication date: March 26, 2020
    Inventors: Sabah Khesbak, Serge Francois Drogi, Florinel G. Balteanu
  • Patent number: 10536116
    Abstract: Disclosed herein are circuits, devices and methods that address challenges associated with power amplifier systems. A power amplifier system includes two or more fast error amplifiers coupled to corresponding power amplifiers. The fast error amplifiers are configured to generate envelope tracking signals based on a signal envelope, the envelope tracking signals modifying a DC-DC regulated voltage from a DC-DC converter to more efficiently operate the power amplifiers. By splitting the envelope tracking between two or more fast error amplifiers and amplification between corresponding two or more power amplifiers, the power, frequency or bandwidth, linearity, signal-to-noise ratio, efficiency, or the like of the power amplifier system can be improved. Wireless communications configurations with such power amplifier systems can provide uplink carrier aggregation and/or cellular signals based on standards and protocols that require increased bandwidth and/or power.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: January 14, 2020
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Florinel G. Balteanu, Serge Francois Drogi, Boshi Jin, Paul T. DiCarlo
  • Patent number: 10516368
    Abstract: Fast envelope tracking systems are provided herein. In certain embodiments, an envelope tracking system for a power amplifier includes a switching regulator and a differential error amplifier configured to operate in combination with one another to generate a power amplifier supply voltage for the power amplifier based on an envelope of a radio frequency (RF) signal amplified by the power amplifier. The envelope tracking system further includes a differential envelope amplifier configured to amplify a differential envelope signal to generate a single-ended envelope signal that changes in relation to the envelope of the RF signal. Additionally, the differential error amplifier generates an output current operable to adjust a voltage level of the power amplifier supply voltage based on comparing the single-ended envelope signal to a reference signal.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: December 24, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventors: Florinel G. Balteanu, Serge Francois Drogi, Sabah Khesbak, Hardik Bhupendra Modi
  • Publication number: 20190386617
    Abstract: Integrated Doherty power amplifiers are provided herein. In certain implementations, a Doherty power amplifier includes a carrier amplification stage that generates a carrier signal, a peaking amplification stage that generates a peaking signal, and an antenna structure that combines the carrier signal and the peaking signal. The antenna structure radiates a transmit wave in which the carrier signal and the peaking signal are combined with a phase shift.
    Type: Application
    Filed: June 5, 2019
    Publication date: December 19, 2019
    Inventors: Patrick Marcus Naraine, William J. Domino, Serge Francois Drogi, René Rodríguez
  • Publication number: 20190372526
    Abstract: Disclosed herein are circuits, devices and methods that address challenges associated with power amplifier systems. A power amplifier system includes two or more fast error amplifiers coupled to corresponding power amplifiers. The fast error amplifiers are configured to generate envelope tracking signals based on a signal envelope, the envelope tracking signals modifying a DC-DC regulated voltage from a DC-DC converter to more efficiently operate the power amplifiers. By splitting the envelope tracking between two or more fast error amplifiers and amplification between corresponding two or more power amplifiers, the power, frequency or bandwidth, linearity, signal-to-noise ratio, efficiency, or the like of the power amplifier system can be improved. Wireless communications configurations with such power amplifier systems can provide uplink carrier aggregation and/or cellular signals based on standards and protocols that require increased bandwidth and/or power.
    Type: Application
    Filed: August 13, 2019
    Publication date: December 5, 2019
    Inventors: Florinel G. Balteanu, Serge Francois Drogi, Boshi Jin, Paul T. DiCarlo
  • Publication number: 20190341888
    Abstract: Embodiments described herein relate to an envelope tracking system that uses a single-bit digital signal to encode an analog envelope tracking control signal, or envelope tracking signal for brevity. In certain embodiments, the envelope tracking system can estimate or measure the amplitude of the baseband signal. The envelope tracking system can further estimate the amplitude of the envelope of the RF signal. The system can convert the amplitude of the envelope signal to a single-bit digital signal, typically at a higher, oversample rate. The single-bit digital signal can be transmitted in, for example, a low-voltage differential signaling (LVDS) format, from a transceiver to an envelope tracker. An analog-to-digital converter (ADC or A/D) can convert the single-bit digital signal back to an analog envelope signal. Moreover, a driver can increase the power of the A/D output envelope signal to produce an envelope-tracking supply voltage for a power amplifier.
    Type: Application
    Filed: April 10, 2019
    Publication date: November 7, 2019
    Inventors: Serge Francois Drogi, Florinel G. Balteanu, Luigi Panseri, Craig Joseph Christmas, Paul T. DiCarlo
  • Patent number: 10466730
    Abstract: A power supply efficiently suppresses transient voltages by storing the maximum charge expected in the transient and releasing it during the transient event at a rate in an equal but opposite amount to the transient, preventing the battery voltage from collapsing. The described power supply provides improved efficiency compared to conventional architectures for transient suppression, thus increasing the length of time between battery charges and creating a better user experience.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: November 5, 2019
    Assignee: QUANTANCE, INC.
    Inventors: Vikas Vinayak, Serge Francois Drogi
  • Patent number: 10454428
    Abstract: Apparatus and methods for envelope tracking systems with automatic mode selection are provided herein. In certain configurations, a power amplifier system includes a power amplifier configured to provide amplification to a radio frequency signal and to receive power from a power amplifier supply voltage, and an envelope tracker including a signal bandwidth detection circuit configured to generate a detected bandwidth signal based on processing an envelope signal corresponding to an envelope of the radio frequency signal. The envelope tracker further includes a switch bank configured to receive a plurality of regulated voltages, a filter configured to filter an output of the switch bank to generate the power amplifier supply voltage, and a mode control circuit configured to control a filtering characteristic of the filter based on the detected bandwidth signal.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: October 22, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventors: Sabah Khesback, Serge Francois Drogi, Florinel G. Balteanu
  • Patent number: 10454429
    Abstract: Disclosed herein are amplification systems that are dynamically biased based on a signal indicative of differential envelope of an input radio-frequency (RF) signal being amplified. The amplification systems include a cascode amplifier configured to amplify the RF signal to generate an output RF signal when one of the transistors of the cascode amplifier is biased by a combination of the input RF signal and a biasing signal while the other transistor of the cascode amplifier is biased by a processed differential envelope signal. The cascode amplifier also receives a combination of a processed differential envelope signal and a supply voltage to generate the output RF signal. The biasing signal can improve or enhance the linearity of amplification systems.
    Type: Grant
    Filed: December 15, 2018
    Date of Patent: October 22, 2019
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Florinel G. Balteanu, Paul T. DiCarlo, Boshi Jin, Serge Francois Drogi
  • Patent number: 10381983
    Abstract: Disclosed herein are circuits, devices and methods that address challenges associated with power amplifier systems. A power amplifier system includes two or more fast error amplifiers coupled to corresponding power amplifiers. The fast error amplifiers are configured to generate envelope tracking signals based on a signal envelope, the envelope tracking signals modifying a DC-DC regulated voltage from a DC-DC converter to more efficiently operate the power amplifiers. By splitting the envelope tracking between two or more fast error amplifiers and amplification between corresponding two or more power amplifiers, the power, frequency or bandwidth, linearity, signal-to-noise ratio, efficiency, or the like of the power amplifier system can be improved. Wireless communications configurations with such power amplifier systems can provide uplink carrier aggregation and/or cellular signals based on standards and protocols that require increased bandwidth and/or power.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: August 13, 2019
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Florinel G. Balteanu, Serge Francois Drogi, Boshi Jin, Paul T. DiCarlo
  • Publication number: 20190165736
    Abstract: Envelope trackers providing compensation for power amplifier output load variation are provided herein. In certain configurations, a radio frequency (RF) system includes an antenna, a power amplifier that receives a radio frequency signal and outputs an amplified radio frequency signal to the antenna, a plurality of detectors coupled to the power amplifier and operable to generate a plurality of detection signals, and an envelope tracker that controls a supply voltage of the power amplifier based on an envelope of the radio frequency signal. The envelope tracker processes the plurality of detection signals to generate a load variation detection signal indicating a change in an output load of the power amplifier arising from a change in a voltage standing wave ratio (VSWR) of the antenna. Additionally, the envelope tracker adjusts a gain of the power amplifier based on the load variation detection signal.
    Type: Application
    Filed: February 1, 2019
    Publication date: May 30, 2019
    Inventors: Sabah Khesbak, Serge Francois Drogi