Patents by Inventor Serge Naveos

Serge Naveos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8647713
    Abstract: A method for forming a protective coating containing aluminum on the surface of a metal part, wherein the part is contacted with a carburizer made of an aluminum alloy, at a treatment temperature and in a chamber, the atmosphere of which contains an active gas which reacts with the carburizer to form a gaseous aluminum halide, which decomposes upon contacting the part while depositing aluminum metal thereon. In the method the aluminum alloy of the carburizer includes at least one element, zirconium and/or hafnium, the active gas reacting with the carburizer to also form a halide of the reactive element which decomposes upon contacting the part while depositing the element thereon at the same time as the aluminum.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: February 11, 2014
    Assignees: SNECMA, Onera
    Inventors: Jerome Brossier, Justine Menuey, Annie Pasquet, Serge Naveos, Marie Pierre Bacos, Pierre Josso
  • Publication number: 20120177823
    Abstract: A method for forming a protective coating containing aluminum on the surface of a metal part, wherein the part is contacted with a carburizer made of an aluminum alloy, at a treatment temperature and in a chamber, the atmosphere of which contains an active gas which reacts with the carburizer to form a gaseous aluminum halide, which decomposes upon contacting the part while depositing aluminum metal thereon. In the method the aluminum alloy of the carburizer includes at least one element, zirconium and/or hafnium, the active gas reacting with the carburizer to also form a halide of the reactive element which decomposes upon contacting the part while depositing the element thereon at the same time as the aluminum.
    Type: Application
    Filed: September 20, 2010
    Publication date: July 12, 2012
    Applicants: ONERA, SNECMA
    Inventors: Jerome Brossier, Justine Menuey, Annie Pasquet, Serge Naveos, Marie Pierre Bacos, Pierre Josso
  • Patent number: 7968207
    Abstract: The invention relates to a method of producing and joining superalloy balls by means of brazing and to objects produced with such joints. According to one aspect of the invention, an alloy powder covered with a brazing solder is bonded to a spherical core and subsequently transformed into a continuous alloy layer by means of brazing.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: June 28, 2011
    Assignee: ONERA (Office National d'Etudes et de Recherches Aerospatiales)
    Inventors: Myriam Douin, Marie-Pierre Bacos, Alexandra Boyer, Aurélie Gregoire, Pierre Josso, Sébastien Mercier, Ariel Moriel, Jason Nadler, Serge Naveos, Catherine Rio
  • Patent number: 7749614
    Abstract: The invention relates to a method of brazing a Ti—Al alloy. According to the invention, a layer of nickel (2) is disposed between a part (1) which is made from titanium aluminide and a brazing sheet (3), such as to enable: the aforementioned part (1) to be brazed to another metallic material (4) without the aluminium diffusing from one to the other; and a stable link with good mechanical strength to be produced. The invention can be used for the assembly of aircraft engine parts which are made from titanium aluminide and nickel-based superalloy.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: July 6, 2010
    Assignee: ONERA (Office National d'Etudes et de Recherches Aerospatiales)
    Inventors: Carine Hoffmann, Marie-Pierre Bacos, Pierre Josso, Serge Naveos
  • Patent number: 7608301
    Abstract: This relates to an improvement to the process of aluminization or activated cementation in which a donor cement containing the aluminium is attacked at high temperature and in a neutral or reducing atmosphere by a gaseous ammonium halide to form a gaseous aluminium halide which decomposes on contact with a nickel-based substrate depositing aluminium metal thereon. According to the invention the aluminium halide is at least partly replaced by a zirconium halide leading to the inclusion of zirconium in the deposit. Improvement in the protection of the hot parts of aircraft engines made of nickel-based superalloy. No figure is to be published.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: October 27, 2009
    Assignees: ONERA (Office National d'Etudes et de Recherches Aerospatiales), SNECMA Moteurs
    Inventors: Marie-Pierre Bacos, Pierre Josso, Serge Naveos
  • Publication number: 20090130478
    Abstract: The invention relates to a method of producing and joining superalloy balls by means of brazing and to objects produced with such joints. According to the invention, an alloy powder covered with a brazing solder is bonded to a spherical core and subsequently transformed into a continuous alloy layer by means of brazing.
    Type: Application
    Filed: July 7, 2006
    Publication date: May 21, 2009
    Inventors: Myriam Douin, Marie-Pierre Bacos, Alexandra Boyer, Aurelie Gregoire, Pierre Josso, Sebastien Mercier, Ariel Moriel, Jason Nadler, Serge Naveos, Catherine Rio
  • Publication number: 20070281175
    Abstract: The invention relates to a method of brazing a Ti—Al alloy. According to the invention, a layer of nickel (2) is disposed between a part (1) which is made from titanium aluminide and a brazing sheet (3), such as to enable: the aforementioned part (1) to be brazed to another metallic material (4) without the aluminium diffusing from one to the other; and a stable link with good mechanical strength to be produced. The invention can be used for the assembly of aircraft engine parts which are made from titanium aluminide and nickel-based superalloy.
    Type: Application
    Filed: July 15, 2004
    Publication date: December 6, 2007
    Inventors: Carine Hoffmann, Marie-Pierre Bacos, Pierre Josso, Serge Naveos
  • Publication number: 20040194858
    Abstract: This relates to an improvement to the process of aluminization or activated cementation in which a donor cement containing the aluminium is attacked at high temperature and in a neutral or reducing atmosphere by a gaseous ammonium halide to form a gaseous aluminium halide which decomposes on contact with a nickel-based substrate depositing aluminium metal thereon.
    Type: Application
    Filed: March 31, 2004
    Publication date: October 7, 2004
    Inventors: Marie-Pierre Bacos, Pierre Josso, Serge Naveos
  • Patent number: 5403546
    Abstract: A nickel-based superalloy suitable for directed solidification, in particular for industrial gas turbine parts, having the following composition by weight:Co: 0 to 5%Cr: 13 to 16%W: 0 to 2%Mo: 2 to 3.5%Al: 3.5 to 4%Ti: 3.5%Ta: 3.
    Type: Grant
    Filed: December 8, 1993
    Date of Patent: April 4, 1995
    Assignee: Office National D'Etudes et de Recherches/Aerospatiales
    Inventors: Tasadduq Khan, Pierre Caron, Jean-Louis Raffestin, Serge Naveos