Patents by Inventor Sergei Koveshnikov

Sergei Koveshnikov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11309321
    Abstract: Some embodiments include an integrated structure having a stack of alternating dielectric levels and conductive levels, and having vertically-stacked memory cells within the conductive levels. An opening extends through the stack. Channel material is within the opening and along the memory cells. At least some of the channel material contains germanium.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: April 19, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Haitao Liu, Chandra Mouli, Sergei Koveshnikov, Dimitrios Pavlopoulos, Guangyu Huang
  • Publication number: 20210082937
    Abstract: Some embodiments include an integrated structure having a stack of alternating dielectric levels and conductive levels, and having vertically-stacked memory cells within the conductive levels. An opening extends through the stack. Channel material is within the opening and along the memory cells. At least some of the channel material contains germanium.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 18, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Haitao Liu, Chandra Mouli, Sergei Koveshnikov, Dimitrios Pavlopoulos, Guangyu Huang
  • Patent number: 10892268
    Abstract: Some embodiments include an integrated structure having a stack of alternating dielectric levels and conductive levels, and having vertically-stacked memory cells within the conductive levels. An opening extends through the stack. Channel material is within the opening and along the memory cells. At least some of the channel material contains germanium.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: January 12, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Haitao Liu, Chandra Mouli, Sergei Koveshnikov, Dimitrios Pavlopoulos, Guangyu Huang
  • Publication number: 20190312047
    Abstract: Some embodiments include an integrated structure having a stack of alternating dielectric levels and conductive levels, and having vertically-stacked memory cells within the conductive levels. An opening extends through the stack. Channel material is within the opening and along the memory cells. At least some of the channel material contains germanium.
    Type: Application
    Filed: May 23, 2019
    Publication date: October 10, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Haitao Liu, Chandra Mouli, Sergei Koveshnikov, Dimitrios Pavlopoulos, Guangyu Huang
  • Patent number: 10381365
    Abstract: Some embodiments include an integrated structure having a stack of alternating dielectric levels and conductive levels, and having vertically-stacked memory cells within the conductive levels. An opening extends through the stack. Channel material is within the opening and along the memory cells. At least some of the channel material contains germanium.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: August 13, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Haitao Liu, Chandra Mouli, Sergei Koveshnikov, Dimitrios Pavlopoulos, Guangyu Huang
  • Publication number: 20170373081
    Abstract: Some embodiments include an integrated structure having a stack of alternating dielectric levels and conductive levels, and having vertically-stacked memory cells within the conductive levels. An opening extends through the stack. Channel material is within the opening and along the memory cells. At least some of the channel material contains germanium.
    Type: Application
    Filed: August 15, 2017
    Publication date: December 28, 2017
    Applicant: Micron Technology, Inc.
    Inventors: Haitao Liu, Chandra Mouli, Sergei Koveshnikov, Dimitrios Pavlopoulos, Guangyu Huang
  • Patent number: 9761599
    Abstract: Some embodiments include an integrated structure having a stack of alternating dielectric levels and conductive levels, and having vertically-stacked memory cells within the conductive levels. An opening extends through the stack. Channel material is within the opening and along the memory cells. At least some of the channel material contains germanium.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: September 12, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Haitao Liu, Chandra Mouli, Sergei Koveshnikov, Dimitrios Pavlopoulos, Guangyu Gavin Huang
  • Publication number: 20170053986
    Abstract: Some embodiments include an integrated structure having a stack of alternating dielectric levels and conductive levels, and having vertically-stacked memory cells within the conductive levels. An opening extends through the stack. Channel material is within the opening and along the memory cells. At least some of the channel material contains germanium.
    Type: Application
    Filed: August 17, 2015
    Publication date: February 23, 2017
    Inventors: Haitao Liu, Chandra Mouli, Sergei Koveshnikov, Dimitrios Pavlopoulos, Guangyu Gavin Huang
  • Publication number: 20060073424
    Abstract: Systems and techniques involving optical coatings for semiconductor devices. An implementation includes a substantially isotropic, heterogeneous anti-reflective coating having a substantially equal thickness normal to any portion of a substrate independent of the orientation of the portion.
    Type: Application
    Filed: September 29, 2004
    Publication date: April 6, 2006
    Inventors: Sergei Koveshnikov, Juan Dominguez, Kyle Flanigan, Ernisse Putna
  • Publication number: 20060029879
    Abstract: An optically tuned SLAM (Sacrificial Light-Absorbing Material) may be used in a via-first dual damascene patterning process to facilitate removal of the SLAM. The monomers used to produce the optically tuned SLAM may be modified to place an optically sensitive structure in the backbone of the SLAM polymer. The wafer may be exposed to a wavelength to which the SLAM is tuned prior to etching and/or ashing steps to degrade the optically tuned SLAM and facilitate removal.
    Type: Application
    Filed: August 9, 2004
    Publication date: February 9, 2006
    Inventors: Kyle Flanigan, Juan Dominguez, Sergei Koveshnikov, Ernisse Putna
  • Publication number: 20040259321
    Abstract: By providing a thermal protocol that involves two steps prior to any isolation steps in a metal oxide semiconductor process, induced stress may be reduced between the bulk silicon and overlying areas, such as epitaxial layers. As a result, the dislocations in the overlying area may be reduced.
    Type: Application
    Filed: June 19, 2003
    Publication date: December 23, 2004
    Inventors: Mehran Aminzadeh, Sergei Koveshnikov
  • Patent number: 6346460
    Abstract: A low cost method of manufacturing a silicon substrate having both impurity gettering and protection against CMOS latch up. The method includes performing a low energy implant of a selected acceptor ion to form a low resistivity buried layer closely adjacent the front surface of a silicon wafer. A low energy silicon implant is also performed to create a plurality of gettering sites closely adjacent the front surface. Subsequently, an epitaxial silicon layer is grown on the front surface.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: February 12, 2002
    Assignee: SEH-America
    Inventors: Oleg V. Kononchuk, Sergei Koveshnikov
  • Patent number: 6339011
    Abstract: In one implementation, A method of forming semiconductive material active area having a proximity gettering region received therein includes providing a substrate comprising bulk semiconductive material. A proximity gettering region is formed within the bulk semiconductive material within a desired active area by ion implanting at least one impurity into the bulk semiconductive material. After forming the proximity gettering region, thickness of the bulk semiconductive material is increased in a blanket manner at least within the desired active area. In one implementation, a method of processing a monocrystalline silicon substrate includes forming a proximity gettering region within monocrystalline silicon of a monocrystalline silicon substrate. After forming the proximity gettering region, epitaxial monocrystalline silicon is formed on the substrate monocrystalline silicon to blanketly increase its thickness at least over the proximity gettering region.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: January 15, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Sergei Koveshnikov