Patents by Inventor Sergei Kucheyev

Sergei Kucheyev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11376657
    Abstract: Disclosed here is a method for making a nanoporous material, comprising aerosolizing a solution comprising at least one metal salt and at least one solvent to obtain an aerosol, freezing the aerosol to obtain a frozen aerosol, and drying the frozen aerosol to obtain a nanoporous metal compound material. Further, the nanoporous metal compound material can be reduced to obtain a nanoporous metal material.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: July 5, 2022
    Assignees: Lawrence Livermore National Security, LLC, National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Michael Bagge-Hansen, Patrick G. Campbell, Jeffrey Colvin, Sergei Kucheyev, Thomas E. Felter
  • Patent number: 10896804
    Abstract: A method and system for providing at least one of planarization, densification, and exfoliation of a porous material using ion beams. The method may use an ion beam generator to generate an ion beam, the ion beam having energy above 0.1 MeV. The ion beam generator may irradiate the surface of a porous material with the ion beam to produce at least one of planarization, densification, and exfoliation of the porous material.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: January 19, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Sergei Kucheyev, Swanee Shin
  • Patent number: 10399053
    Abstract: Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: September 3, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Joe H. Satcher, Jr., Sergei Kucheyev, Supakit Charnvanichborikarn, Jeffrey D. Colvin, Thomas E. Felter, Sangil Kim, Matthew Merrill, Christine A. Orme
  • Publication number: 20190035602
    Abstract: A method and system for providing at least one of planarization, densification, and exfoliation of a porous material using ion beams. The method may use an ion beam generator to generate an ion beam, the ion beam having energy above 0.1 MeV. The ion beam generator may irradiate the surface of a porous material with the ion beam to produce at least one of planarization, densification, and exfoliation of the porous material.
    Type: Application
    Filed: July 27, 2017
    Publication date: January 31, 2019
    Inventors: Sergei KUCHEYEV, Swanee SHIN
  • Publication number: 20180354030
    Abstract: Disclosed here is a method for making a nanoporous material, comprising aerosolizing a solution comprising at least one metal salt and at least one solvent to obtain an aerosol, freezing the aerosol to obtain a frozen aerosol, and drying the frozen aerosol to obtain a nanoporous metal compound material. Further, the nanoporous metal compound material can be reduced to obtain a nanoporous metal material.
    Type: Application
    Filed: July 27, 2018
    Publication date: December 13, 2018
    Applicants: Lawrence Livermore National Security, LLC, National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Michael Bagge-Hansen, Patrick G. Campbell, Jeffrey Colvin, Sergei Kucheyev, Thomas E. Felter
  • Patent number: 10086431
    Abstract: Disclosed here is a method for making a nanoporous material, comprising aerosolizing a solution comprising at least one metal salt and at least one solvent to obtain an aerosol, freezing the aerosol to obtain a frozen aerosol, and drying the frozen aerosol to obtain a nanoporous metal compound material. Further, the nanoporous metal compound material can be reduced to obtain a nanoporous metal material.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: October 2, 2018
    Assignees: Lawrence Livermoe National Security, LLC, National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Michael Bagge-Hansen, Patrick G. Campbell, Jeffrey D. Colvin, Sergei Kucheyev, Thomas E. Felter
  • Patent number: 10014090
    Abstract: Disclosed here is a composition comprising at least one high-density carbon-nanotube-based monolith, said monolith comprising carbon nanotubes crosslinked by nanoparticles and having a density of at least 0.2 g/cm3. Also provided is a method for making the composition comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension is a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce the composition comprising a high-density carbon-nanotube-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: July 3, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Supakit Charnvanichborikarn, Sergei Kucheyev, Elizabeth Montalvo, Swanee Shin, Elijah Tylski
  • Patent number: 9844762
    Abstract: Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: December 19, 2017
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Joe Satcher, Sergei Kucheyev, Supakit Charnvanichborikarn, Jeffrey Colvin, Thomas Felter, Sangil Kim, Matthew Merrill, Christine Orme
  • Publication number: 20170312725
    Abstract: Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 2, 2017
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Marcus A. Worsley, Joe H. Satcher, JR., Sergei Kucheyev, Supakit Charnvanichborikarn, Jeffrey D. Colvin, Thomas E. Felter, Sangil Kim, Matthew Merrill, Christine A. Orme
  • Patent number: 9601226
    Abstract: A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 21, 2017
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Supakit Charnvanichborikarn, Sergei Kucheyev, Elizabeth Montalvo, Swanee Shin, Elijah Tylski
  • Publication number: 20160368047
    Abstract: Disclosed here is a method for making a nanoporous material, comprising aerosolizing a solution comprising at least one metal salt and at least one solvent to obtain an aerosol, freezing the aerosol to obtain a frozen aerosol, and drying the frozen aerosol to obtain a nanoporous metal compound material. Further, the nanoporous metal compound material can be reduced to obtain a nanoporous metal material.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 22, 2016
    Inventors: Michael Bagge-Hansen, Patrick G. Campbell, Jeffrey D. Colvin, Sergei Kucheyev, Thomas E. Felter
  • Publication number: 20160351285
    Abstract: Disclosed here is a composition comprising at least one high-density carbon-nanotube-based monolith, said monolith comprising carbon nanotubes crosslinked by nanoparticles and having a density of at least 0.2 g/cm3. Also provided is a method for making the composition comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension is a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce the composition comprising a high-density carbon-nanotube-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.
    Type: Application
    Filed: July 22, 2016
    Publication date: December 1, 2016
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Supakit Charnvanichborikarn, Sergei Kucheyev, Elizabeth Montalvo, Swanee Shin, Elijah Tylski
  • Publication number: 20160101398
    Abstract: Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.
    Type: Application
    Filed: September 12, 2014
    Publication date: April 14, 2016
    Inventors: Marcus A. Worsley, Joe Satcher, Sergei Kucheyev, Supakit Charnvanichborikarn, Jeffrey Colvin, Thomas Felter, Sangil Kim, Matthew Merrill, Christine Orme
  • Publication number: 20140178289
    Abstract: A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 26, 2014
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Supakit Charnvanichborikarn, Sergei Kucheyev, Elizabeth Montalvo, Swanee Shin, Elijah Tylski