Patents by Inventor Sergei Skarupo

Sergei Skarupo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965883
    Abstract: Provided are point of care sensor systems that include portable readers and disposable cartridges for receiving and analyzing samples. A cartridge may be equipped with one or more sensor channels, each containing one or more sensors. After providing a sample to a cartridge, the cartridge can be inserted into a reader, which can interact with the cartridge to perform on-cartridge sensing and receive signals indicating the presence and/or quantity of one or more targets in the sample. Examples of cartridges can include cardiac panels, sepsis panels and the like. In some embodiments, the same sensor hardware may be configured for multiple measurements of different targets conducted at different time frames. Also provided herein are novel on-cartridge solid and liquid reagent storage and delivery mechanisms.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: April 23, 2024
    Assignee: Nanomix, Inc.
    Inventors: Bradley N. Johnson, Jui-Ming Yang, Kanchan A. Joshi, Ray R. Radtkey, Garrett Gruener, Sergei Skarupo
  • Publication number: 20200232981
    Abstract: Provided are point of care sensor systems that include portable readers and disposable cartridges for receiving and analyzing samples. A cartridge may be equipped with one or more sensor channels, each containing one or more sensors. After providing a sample to a cartridge, the cartridge can be inserted into a reader, which can interact with the cartridge to perform on-cartridge sensing and receive signals indicating the presence and/or quantity of one or more targets in the sample. Examples of cartridges can include cardiac panels, sepsis panels and the like. In some embodiments, the same sensor hardware may be configured for multiple measurements of different targets conducted at different time frames. Also provided herein are novel on-cartridge solid and liquid reagent storage and delivery mechanisms.
    Type: Application
    Filed: November 7, 2019
    Publication date: July 23, 2020
    Applicant: Nanomix, Inc.
    Inventors: Bradley N. Johnson, Jui-Ming Yang, Kanchan A. Joshi, Ray R. Radtkey, Garrett Gruener, Sergei Skarupo
  • Patent number: 10520501
    Abstract: Provided are point of care sensor systems that include portable readers and disposable cartridges for receiving and analyzing samples. A cartridge may be equipped with one or more sensor channels, each containing one or more sensors. After providing a sample to a cartridge, the cartridge can be inserted into a reader, which can interact with the cartridge to perform on-cartridge sensing and receive signals indicating the presence and/or quantity of one or more targets in the sample. Examples of cartridges can include cardiac panels, sepsis panels and the like. In some embodiments, the same sensor hardware may be configured for multiple measurements of different targets conducted at different time frames. Also provided herein are novel on-cartridge solid and liquid reagent storage and delivery mechanisms.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: December 31, 2019
    Assignee: Nanomix, Inc.
    Inventors: Bradley N. Johnson, Jui-Ming Yang, Kanchan A. Joshi, Ray R. Radtkey, Garrett Gruener, Sergei Skarupo
  • Publication number: 20170153230
    Abstract: Provided are point of care sensor systems that include portable readers and disposable cartridges for receiving and analyzing samples. A cartridge may be equipped with one or more sensor channels, each containing one or more sensors. After providing a sample to a cartridge, the cartridge can be inserted into a reader, which can interact with the cartridge to perform on-cartridge sensing and receive signals indicating the presence and/or quantity of one or more targets in the sample. Examples of cartridges can include cardiac panels, sepsis panels and the like. In some embodiments, the same sensor hardware may be configured for multiple measurements of different targets conducted at different time frames. Also provided herein are novel on-cartridge solid and liquid reagent storage and delivery mechanisms.
    Type: Application
    Filed: September 9, 2016
    Publication date: June 1, 2017
    Inventors: Bradley N. Johnson, Jui-Ming Yang, Kanchan A. Joshi, Ray R. Radtkey, Garrett Gruener, Sergei Skarupo
  • Patent number: 9458488
    Abstract: Provided are point of care sensor systems that include portable readers and disposable cartridges for receiving and analyzing samples. A cartridge may be equipped with one or more sensor channels, each containing one or more sensors. After providing a sample to a cartridge, the cartridge can be inserted into a reader, which can interact with the cartridge to perform on-cartridge sensing and receive signals indicating the presence and/or quantity of one or more targets in the sample. Examples of cartridges can include cardiac panels, sepsis panels and the like. In some embodiments, the same sensor hardware may be configured for multiple measurements of different targets conducted at different time frames. Also provided herein are novel on-cartridge solid and liquid reagent storage and delivery mechanisms.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 4, 2016
    Assignee: Nanomix, Inc.
    Inventors: Bradley N. Johnson, Jui-Ming Yang, Kanchan A. Joshi, Ray R. Radtkey, Garrett Gruener, Sergei Skarupo
  • Publication number: 20160123947
    Abstract: Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes such ammonia. An environmental control system employing nanoelectronic sensors is described. A personnel safety system configured as a disposable badge employing nanoelectronic sensors is described. A method of dynamic sampling and exposure of a sensor providing a number of operational advantages is described.
    Type: Application
    Filed: May 28, 2015
    Publication date: May 5, 2016
    Inventors: Mikhail Briman, Craig Bryant, Ying-Lan Chang, Jean-Christophe P. Gabriel, Shripal C. Ghandi, Bradley N. Johnson, Willem-Jan Ouborg, John Loren Passmore, Kastooriranganathan Ramakrishnan, Sergei Skarupo, Alexander Star, Christian Valcke
  • Patent number: 9291613
    Abstract: Sensors and detection systems suitable for measuring analytes, such as biomolecule, organic and inorganic species, including environmentally and medically relevant volatiles and gases, such as NO, NO2, CO2, NH3, H2, CO and the like, are provided. Certain embodiments of nanostructured sensor systems are configured for measurement of medically important gases in breath. Applications include the measurement of endogenous nitric oxide (NO) in breath, such as for the monitoring or diagnosis of asthma and other pulmonary conditions.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: March 22, 2016
    Assignee: Nanomix, Inc.
    Inventors: Craig Bryant, Ying-Lan Chang, Jean-Christophe P. Gabriel, Bradley N. Johnson, Oleksandr Kuzmych, William Mickelson, John Loren Passmore, Sergei Skarupo, Christian Valcke
  • Patent number: 9103775
    Abstract: Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes inorganic gases, organic vapors, biomolecules, viruses and the like. A number of embodiments of capacitive sensors having alternative architectures are described. Particular examples include integrated cell membranes and membrane-like structures in nanoelectronic sensors.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: August 11, 2015
    Assignee: Nanomix, Inc.
    Inventors: Keith Bradley, Ying-Lan Chang, Jean-Christophe P. Gabriel, John Loren Passmore, Sergei Skarupo, Eugene Tu, Christian Valcke
  • Publication number: 20150008486
    Abstract: Sensors and detection systems suitable for measuring analytes, such as biomolecule, organic and inorganic species, including environmentally and medically relevant volatiles and gases, such as NO, NO2, CO2, NH3, H2, CO and the like, are provided. Certain embodiments of nanostructured sensor systems are configured for measurement of medically important gases in breath. Applications include the measurement of endogenous nitric oxide (NO) in breath, such as for the monitoring or diagnosis of asthma and other pulmonary conditions.
    Type: Application
    Filed: June 16, 2014
    Publication date: January 8, 2015
    Inventors: Craig Bryant, Ying-Lan Chang, Jean-Christophe P. Gabriel, Bradley N. Johnson, Oleksandr Kuzmych, William Mickelson, John Loren Passmore, Sergei Skarupo, Christian Valcke
  • Publication number: 20140273187
    Abstract: Provided are point of care sensor systems that include portable readers and disposable cartridges for receiving and analyzing samples. A cartridge may be equipped with one or more sensor channels, each containing one or more sensors. After providing a sample to a cartridge, the cartridge can be inserted into a reader, which can interact with the cartridge to perform on-cartridge sensing and receive signals indicating the presence and/or quantity of one or more targets in the sample. Examples of cartridges can include cardiac panels, sepsis panels and the like. In some embodiments, the same sensor hardware may be configured for multiple measurements of different targets conducted at different time frames. Also provided herein are novel on-cartridge solid and liquid reagent storage and delivery mechanisms.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Bradley N. Johnson, Jui-Ming Yang, Kanchan A. Joshi, Ray R. Radtkey, Garrett Gruener, Sergei Skarupo
  • Patent number: 8754454
    Abstract: Sensors and detection systems suitable for measuring analytes, such as biomolecule, organic and inorganic species, including environmentally and medically relevant volatiles and gases, such as NO, NO2, CO2, NH3, H2, CO and the like, are provided. Certain embodiments of nanostructured sensor systems are configured for measurement of medically important gases in breath. Applications include the measurement of endogenous nitric oxide (NO) in breath, such as for the monitoring or diagnosis of asthma and other pulmonary conditions.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: June 17, 2014
    Assignee: Nanomix, Inc.
    Inventors: Craig Bryant, Ying-Lan Chang, Jean-Christophe P. Gabriel, Bradley N. Johnson, Oleksandr Kuzmych, William Mickelson, John Loren Passmore, Sergei Skarupo, Christian Valcke
  • Publication number: 20130075690
    Abstract: Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes such ammonia. An environmental control system employing nanoelectronic sensors is described. A personnel safety system configured as a disposable badge employing nanoelectronic sensors is described. A method of dynamic sampling and exposure of a sensor providing a number of operational advantages is described.
    Type: Application
    Filed: April 9, 2012
    Publication date: March 28, 2013
    Applicant: NANOMIX, INC.
    Inventors: Mikhail Briman, Craig Bryant, Ying-Lan Chang, Jean-Christophe P. Gabriel, Shripal C. Gandhi, Bradley N. Johnson, Willem-Jan Ouborg, John Loren Passmore, Kastooriranganathan Ramakrishnan, Sergei Skarupo, Alexander Star, Christian Valcke
  • Publication number: 20130075794
    Abstract: Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes inorganic gases, organic vapors, biomolecules, viruses and the like. A number of embodiments of capacitive sensors having alternative architectures are described. Particular examples include integrated cell membranes and membrane-like structures in nanoelectronic sensors.
    Type: Application
    Filed: April 10, 2012
    Publication date: March 28, 2013
    Inventors: Keith Bradley, Ying-Lan Chang, Jean-Christophe P. Gabriel, John Loren Passmore, Sergei Skarupo, Eugene Tu, Christian Valcke
  • Patent number: 8154093
    Abstract: Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes inorganic gases, organic vapors, biomolecules, viruses and the like. A number of embodiments of capacitive sensors having alternative architectures are described. Particular examples include integrated cell membranes and membrane-like structures in nanoelectronic sensors.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: April 10, 2012
    Assignee: Nanomix, Inc.
    Inventors: Keith Bradley, Ying-Lan Chang, Jean-Christophe P. Gabriel, John Loren Passmore, Sergei Skarupo, Eugene Tu, Christian Valcke
  • Patent number: 8152991
    Abstract: Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes such ammonia. An environmental control system employing nanoelectronic sensors is described. A personnel safety system configured as a disposable badge employing nanoelectronic sensors is described. A method of dynamic sampling and exposure of a sensor providing a number of operational advantages is described.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: April 10, 2012
    Assignee: Nanomix, Inc.
    Inventors: Mikhail Briman, Craig Bryant, Ying-Lan Chang, Jean-Christophe P. Gabriel, Shirpal C. Gandhi, Bradley N Johnson, Willem-Jan Ouborg, John Loren Passmore, Kastooriranganathan Ramakrishnan, Sergei Skarupo, Alexander Star, Christian Valcke
  • Publication number: 20120006102
    Abstract: Sensors and detection systems suitable for measuring analytes, such as biomolecule, organic and inorganic species, including environmentally and medically relevant volatiles and gases, such as NO, NO2, CO2, NH3, H2, CO and the like, are provided. Certain embodiments of nanostructured sensor systems are configured for measurement of medically important gases in breath. Applications include the measurement of endogenous nitric oxide (NO) in breath, such as for the monitoring or diagnosis of asthma and other pulmonary conditions.
    Type: Application
    Filed: April 11, 2011
    Publication date: January 12, 2012
    Applicant: NANOMIX, INC.
    Inventors: Craig Bryant, Ying-Lan Chang, Jean-Christophe P. Gabriel, Bradley N. Johnson, Oleksandr Kuzmych, William Mickelson, John Loren Passmore, Sergei Skarupo, Christian Valcke
  • Patent number: 7948041
    Abstract: Sensors and detection systems suitable for measuring analytes, such as biomolecule, organic and inorganic species, including environmentally and medically relevant volatiles and gases, such as NO, NO2, CO2, NH3, H2, CO and the like, are provided. Certain embodiments of nanostructured sensor systems are configured for measurement of medically important gases in breath. Applications include the measurement of endogenous nitric oxide (NO) in breath, such as for the monitoring or diagnosis of asthma and other pulmonary conditions.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: May 24, 2011
    Assignee: Nanomix, Inc.
    Inventors: Craig Bryant, Ying-Lan Chang, Jean-Christophe P. Gabriel, Bradley N. Johnson, Oleksandr Kuzmych, William Mickelson, John Loren Passmore, Sergei Skarupo, Christian Valcke
  • Publication number: 20100323925
    Abstract: A detector system is described including arrays having a plurality of nanoelectronic sensors comprising a channel including a nanostructured element disposed on a substrate, the nanostructured element functionalized by one or more materials disposed on or adjacent to the nanostructured element so as to operatively influence one or more sensor electrical properties. In certain embodiments, the nanostructured element comprise one or more nanotubes, and the functionalization material may include nanoparticles composed of one or more metals, metal oxides, salts, or other inorganic or organic materials or composites of these. In one exemplary embodiment, an array includes plurality of sensors which are configured as field effect transistors, the nanostructured element comprising a randomly dispersed interconnecting network of single-walled carbon nanotubes (SWNTs) having semiconducting properties, and functionalized by deposition of metallic nanoparticles comprising one or more metallic elements.
    Type: Application
    Filed: October 2, 2006
    Publication date: December 23, 2010
    Inventors: Jean-Christophe P. Gabriel, Vikram Joshi, Sergei Skarupo, Alexander Star, David Thomas
  • Publication number: 20100085067
    Abstract: Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes such as anesthesia gases, CO2 and the like in human breath. An integrated monitor system and disposable sensor unit is described which permits a number of different anesthetic agents to be identified and monitored, as well as concurrent monitoring of other breath species, such as CO2. The sensor unit may be configured to be compact, light weight, and inexpensive. Wireless embodiments provide such enhancements as remote monitoring. A simulator system for modeling the contents and conditions of human inhalation and exhalation with a selected mixture of a treatment agent is also described, particularly suited to the testing of sensors to be used in airway sampling.
    Type: Application
    Filed: September 15, 2009
    Publication date: April 8, 2010
    Applicant: Nanomix, Inc.
    Inventors: Jean-Christophe P. Gabriel, Vikram Joshi, John Loren Passmore, Sergei Skarupo, Alexander Star, Christian Valcke
  • Patent number: 7522040
    Abstract: A portable sensor device incorporates a low-power, nanostructure sensor coupled to a wireless transmitter. The sensor uses a nanostructure conducting channel, such as a nanotube network, that is functionalized to respond to a selected analyte. A measurement circuit connected to the sensor determines a change in the electrical characteristic of the sensor, from which information concerning the present or absence of the analyte may be determined. The portable sensor device may include a portable power source, such as a battery. It may further include a transmitter for wirelessly transmitting data to a base station.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: April 21, 2009
    Assignee: Nanomix, Inc.
    Inventors: John Loren Passmore, Jean-Christophe P. Gabriel, Alexander Star, Vikram Joshi, Sergei Skarupo