Patents by Inventor Sergey Anatol'evich Kuchinsky

Sergey Anatol'evich Kuchinsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210305539
    Abstract: An organic light emitting diode (OLED) assembly (100), comprising: a diode superstructure (110) comprising a cathode (140), an anode (120) having a refractive index of na, and an organic light emitting semiconductor material (160) interposed between the cathode (140) and the anode (120); and a light diffracting substructure (150) providing a scattering cross section of light from the diode superstructure (110). The light diffracting substructure (150) comprises: a transparent substrate (156), a plurality of nanoparticles (154) in contact with the substrate (156) and having a refractive index of ns, and a planarization layer (152) over the nanoparticles (154) and having a refractive index of np. Further, np is within 25% of na and ns>np In addition, ns>about 1.9.
    Type: Application
    Filed: July 23, 2018
    Publication date: September 30, 2021
    Inventors: Dipakbin Qasem Chowdhury, Sergey Anatol'evich Kuchinsky, Dmitri Vladislavovich Kuksenkov, JooYoung Lee, Michal Mlejnek, Hong Yoon
  • Patent number: 10690858
    Abstract: The evanescent optical coupler is constituted by an IOX waveguide and an optical fiber. The IOX waveguide is formed in a glass substrate and has a tapered section that runs in an axial direction. The IOX waveguide supports a waveguide fundamental mode having an waveguide effective index NW0 that varies within a range ?NW0 as a function of the axial direction. The IOX waveguide can also support a few higher-order modes. The optical fiber supports a fiber fundamental mode having a fiber effective index NF0 that falls within the waveguide effective index range ?NW0 of the waveguide fundamental mode of the tapered section of the IOX waveguide. A portion of the optical fiber is interfaced with the tapered section of the IOX waveguide to define a coupling region over which evanescent optical coupling occurs between the optical fiber and the IOX waveguide.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: June 23, 2020
    Assignee: Corning Incorporated
    Inventors: Lars Martin Otfried Brusberg, Sergey Anatol'evich Kuchinsky, Aramais Robert Zakharian
  • Publication number: 20200106147
    Abstract: The channel waveguides disclosed herein have bend compensation in the form of at least one compensated bend section. The channel waveguides are formed in a glass-based substrate having a glass-based matrix. The channel waveguide has an waveguide IOX region with a straight section and a bend section. The waveguide IOX region at the bend section is superimposed with a quasi-linear modifying IOX region to form a compensated bend IOX region that defines the compensated bend section. The compensated bend section has a reduced amount of optical loss as compared to if the compensated bend section had a refractive index profile that was the same as the straight section. Methods of forming the compensated bend sections for the channel waveguides are also disclosed.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Lars Martin Otfried Brusberg, Sergey Anatol'evich Kuchinsky, Rostislav Vatchev Roussev, Aramais Robert Zakharian
  • Patent number: 10585242
    Abstract: The channel waveguides disclosed herein have bend compensation in the form of at least one compensated bend section. The channel waveguides are formed in a glass-based substrate having a glass-based matrix. The channel waveguide has an waveguide IOX region with a straight section and a bend section. The waveguide IOX region at the bend section is superimposed with a quasi-linear modifying IOX region to form a compensated bend IOX region that defines the compensated bend section. The compensated bend section has a reduced amount of optical loss as compared to if the compensated bend section had a refractive index profile that was the same as the straight section. Methods of forming the compensated bend sections for the channel waveguides are also disclosed.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: March 10, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Lars Martin Otfried Brusberg, Sergey Anatol'evich Kuchinsky, Rostislav Vatchev Roussev, Aramais Robert Zakharian
  • Patent number: 10520660
    Abstract: A light guide plate suitable for use in a liquid crystal display device, the light guide plate comprising a glass plate and a light coupler bonded to a edge surface of the light guide plate. Also disclosed is a backlight unit for a liquid crystal display device employing the light guide plate, and a display device employing the backlight unit.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: December 31, 2019
    Assignee: Corning Incorporated
    Inventors: Sergey Anatol'evich Kuchinsky, Shenping Li, Aramais Robert Zakharian
  • Publication number: 20190265416
    Abstract: The evanescent optical coupler is constituted by an IOX waveguide and an optical fiber. The IOX waveguide is formed in a glass substrate and has a tapered section that runs in an axial direction. The IOX waveguide supports a waveguide fundamental mode having an waveguide effective index NW0 that varies within a range ?NW0 as a function of the axial direction. The IOX waveguide can also support a few higher-order modes. The optical fiber supports a fiber fundamental mode having a fiber effective index NF0 that falls within the waveguide effective index range ?NW0 of the waveguide fundamental mode of the tapered section of the IOX waveguide. A portion of the optical fiber is interfaced with the tapered section of the IOX waveguide to define a coupling region over which evanescent optical coupling occurs between the optical fiber and the IOX waveguide.
    Type: Application
    Filed: February 28, 2018
    Publication date: August 29, 2019
    Inventors: Lars Martin Otfried Brusberg, Sergey Anatol'evich Kuchinsky, Aramais Robert Zakharian
  • Publication number: 20190185367
    Abstract: A backlight unit comprising a first optical component having a first major face and a second major face, a second optical component laminated having a third major face and a fourth major face, wherein the first and third major faces oppose each other, and a discontinuous bonding material deposited between the first and third major faces, the bonding material laminating the first and second optical components.
    Type: Application
    Filed: August 11, 2017
    Publication date: June 20, 2019
    Inventors: Sergey Anatol'evich Kuchinsky, Shenping Li, Steven S Rosenblum, James Andrew West
  • Patent number: 10209450
    Abstract: Methods for coupling of waveguides with dissimilar mode field diameters, and related apparatuses, components, and systems are disclosed. In one example, a waveguide coupling assembly includes an input waveguide having a first mode, and a transition waveguide having a first transition waveguide section, a second transition waveguide section, and a tapered section. The first transition waveguide section has a second mode and is disposed proximate to the input waveguide such that a phase matching condition is achieved between the input waveguide and the first transition waveguide section, thereby evanescently coupling the input waveguide to the first transition waveguide section of the transition waveguide. The tapered section is optically connected between the first transition waveguide section and the second transition waveguide section, such that the second mode of the first transition waveguide section is converted to the third mode of the second transition waveguide section by the tapered section.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: February 19, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Andrey Kobyakov, Sergey Anatol'evich Kuchinsky, Xue Liu, Aramais Robert Zakharian
  • Publication number: 20180313996
    Abstract: A light guide plate suitable for use in a liquid crystal display device, the light guide plate comprising a glass plate and a light coupler bonded to a edge surface of the light guide plate. Also disclosed is a backlight unit for a liquid crystal display device employing the light guide plate, and a display device employing the backlight unit.
    Type: Application
    Filed: October 5, 2016
    Publication date: November 1, 2018
    Inventors: Sergey Anatol'evich Kuchinsky, Shenping Li, Aramais Robert Zakharian
  • Publication number: 20170131472
    Abstract: Methods for coupling of waveguides with dissimilar mode field diameters, and related apparatuses, components, and systems are disclosed. In one example, a waveguide coupling assembly includes an input waveguide having a first mode, and a transition waveguide having a first transition waveguide section, a second transition waveguide section, and a tapered section. The first transition waveguide section has a second mode and is disposed proximate to the input waveguide such that a phase matching condition is achieved between the input waveguide and the first transition waveguide section, thereby evanescently coupling the input waveguide to the first transition waveguide section of the transition waveguide. The tapered section is optically connected between the first transition waveguide section and the second transition waveguide section, such that the second mode of the first transition waveguide section is converted to the third mode of the second transition waveguide section by the tapered section.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 11, 2017
    Inventors: Andrey Kobyakov, Sergey Anatol'evich Kuchinsky, Xue Liu, Aramais Robert Zakharian
  • Patent number: 9453969
    Abstract: A grating-coupler assembly with a small mode-field diameter for photonic-integrated-circuit systems is disclosed. The assembly includes a silicon waveguide supported by a silicon-on-insulator substrate, and a grating coupler supported by the substrate and optically coupled to the silicon waveguide. The assembly has an optical fiber with a mode-field diameter in the range from 5 ?m to 6 ?m. One end of the optical fiber is disposed adjacent the grating coupler to define a coupling efficiency of 0.7 or greater.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: September 27, 2016
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Andrey Kobyakov, Sergey Anatol'evich Kuchinsky, Xue Liu, Aramais Zakharian
  • Patent number: 9429716
    Abstract: Mirror systems securing optical fibers to ferrules by thermally securing bonding agents within fiber optic connector housings are disclosed, along with related methods and assemblies. A fiber optic connector includes an optical fiber secured within a ferrule by a temperature-sensitive bonding agent to prevent attenuation-causing movement. The bonding agent is activated (e.g., cured) by heat provided by laser energy incident upon the ferrule, which is at least partially disposed within a fiber optic connector housing and which may be damaged by the laser energy. By shaping and disposing at least one mirror of a mirror system, the laser energy may be reflected to be incident upon the ferrule in a controllable intensity distribution. In this manner, the laser energy may be absorbed uniformly or substantially uniformly along a partial length of the ferrule extending into the housing to accelerate securing of the bonding agent while avoiding damage to the housing.
    Type: Grant
    Filed: December 7, 2013
    Date of Patent: August 30, 2016
    Assignee: Corning Cable Systems LLC
    Inventors: Robert Bruce Elkins, II, Andrey Kobyakov, Sergey Anatol'evich Kuchinsky, Aramais Zakharian
  • Publication number: 20150309261
    Abstract: A grating-coupler assembly with a small mode-field diameter for photonic-integrated-circuit systems is disclosed. The assembly includes a silicon waveguide supported by a silicon-on-insulator substrate, and a grating coupler supported by the substrate and optically coupled to the silicon waveguide. The assembly has an optical fiber with a mode-field diameter in the range from 5 ?m to 6 ?m. One end of the optical fiber is disposed adjacent the grating coupler to define a coupling efficiency of 0.7 or greater.
    Type: Application
    Filed: April 29, 2014
    Publication date: October 29, 2015
    Applicant: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Andrey Kobyakov, Sergey Anatol'evich Kuchinsky, Xue Liu, Aramais Zakharian