Patents by Inventor Sergey Burtsev

Sergey Burtsev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11689310
    Abstract: A method for providing a maximum channel capacity per optical channel in an optical wavelength division multiplexing, WDM, transmission system is described. The WDM transmission system includes transceivers using multiple optical channels in a WDM channel grid to transport optical signals modulated with a modulation format with a signal symbol rate, SR, via an optical transmission link, OTL, along an optical path from a transmitting transceiver to a receiving transceiver. A channel capacity of the optical channel is maximized while a calculated channel margin, CM, is maintained above a preset minimal channel margin value.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: June 27, 2023
    Assignee: ADVA OPTICAL NETWORKING SE
    Inventors: Sergey Burtsev, Steven Searcy, Thomas Richter, Sorin Tibuleac
  • Publication number: 20220353003
    Abstract: A method for providing a maximum channel capacity per optical channel in an optical wavelength division multiplexing, WDM, transmission system is described. The WDM transmission system includes transceivers using multiple optical channels in a WDM channel grid to transport optical signals modulated with a modulation format with a signal symbol rate, SR, via an optical transmission link, OTL, along an optical path from a transmitting transceiver to a receiving transceiver. A channel capacity of the optical channel is maximized while a calculated channel margin, CM, is maintained above a preset minimal channel margin value.
    Type: Application
    Filed: April 22, 2021
    Publication date: November 3, 2022
    Inventors: Sergey Burtsev, Steven Searcy, Thomas Richter, Sorin Tibuleac
  • Patent number: 11489597
    Abstract: The present invention relates to a method for optimizing performance of a multi-span optical fiber network. Each span has an associated optical transmission fiber connected to an associated optical amplifier. Gain and output power of the associated optical amplifier are respectively controlled independently. An amplifier noise figure respectively depends on the gain of the associated optical amplifier, with each associated optical amplifier further connected to launch optical signals into a remainder of a corresponding optical transmission line. The method includes the steps of for each span, computing the amplifier noise figure and a non-linear noise generated in the span based on information about the span and using the computed amplifier noise figure and the computed non-linear noise to compute an optimum launch power, and optimizing performance of the multi-span optical fiber network based on the computed optimum launch powers of all spans.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: November 1, 2022
    Assignee: ADVA Optical Networking SE
    Inventors: Sorin Tibuleac, Steven Searcy, Sergey Burtsev
  • Publication number: 20220109509
    Abstract: The present invention relates to a method for optimizing performance of a multi-span optical fiber network. Each span has an associated optical transmission fiber connected to an associated optical amplifier. Gain and output power of the associated optical amplifier are respectively controlled independently. An amplifier noise figure respectively depends on the gain of the associated optical amplifier, with each associated optical amplifier further connected to launch optical signals into a remainder of a corresponding optical transmission line. The method includes the steps of for each span, computing the amplifier noise figure and a non-linear noise generated in the span based on information about the span and using the computed amplifier noise figure and the computed non-linear noise to compute an optimum launch power, and optimizing performance of the multi-span optical fiber network based on the computed optimum launch powers of all spans.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 7, 2022
    Inventors: Sorin Tibuleac, Steven Searcy, Sergey Burtsev
  • Publication number: 20070274625
    Abstract: A method of communicating an optical signal includes generating an optical signal at a bit rate of at least 2.5 Gb/s. The optical signal including at least thirty optical channels. In one particular embodiment, at least some of the thirty optical channels reside within a 1567-1620 nanometer wavelength range. The method also includes receiving the optical signal at a ROPA that includes a rare-earth doped optical fiber. In addition, the method includes introducing a pump signal to a communication span of the unrepeatered optical communication system. The pump signal operable to amplify the optical signal by Raman amplification within the communication span and including at least one pump signal wavelength operable to excite the rare-earth doped fiber. The method further includes receiving the optical signal after the optical signal has traversed at least 200 kilometers of the communication span.
    Type: Application
    Filed: April 14, 2006
    Publication date: November 29, 2007
    Inventors: Philippe Perrier, Sergey Burtsev, Do Chang, Andrzej Kaminski, Andrej Puc