Patents by Inventor Sergey Osechinskiy

Sergey Osechinskiy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250147066
    Abstract: An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic-force microscope device.
    Type: Application
    Filed: January 8, 2025
    Publication date: May 8, 2025
    Inventors: Sergey Osechinskiy, Anthonius Ruiter, Bede Pittenger, Syed-Asif Syed-Amanulla
  • Patent number: 12241911
    Abstract: An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic-force microscope device.
    Type: Grant
    Filed: February 2, 2024
    Date of Patent: March 4, 2025
    Assignee: BRUKER NANO, INC.
    Inventors: Sergey Osechinskiy, Anthonius Ruiter, Bede Pittenger, Syed-Asif Syed-Amanulla
  • Publication number: 20240175895
    Abstract: An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic-force microscope device.
    Type: Application
    Filed: February 2, 2024
    Publication date: May 30, 2024
    Applicant: BRUKER NANO, INC.
    Inventors: Sergey Osechinskiy, Anthonius Ruiter, Bede Pittenger, Syed-Asif Syed-Amanulla
  • Patent number: 11940461
    Abstract: An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic-force microscope device.
    Type: Grant
    Filed: April 11, 2023
    Date of Patent: March 26, 2024
    Assignee: BRUKER NANO, INC.
    Inventors: Sergey Osechinskiy, Anthonius Ruiter, Bede Pittenger, Syed-Asif Syed-Amanulla
  • Publication number: 20230243867
    Abstract: An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic-force microscope device.
    Type: Application
    Filed: April 11, 2023
    Publication date: August 3, 2023
    Applicant: BRUKER NANO, INC.
    Inventors: Sergey Osechinskiy, Anthonius Ruiter, Bede Pittenger, Syed-Asif Syed-Amanulla
  • Patent number: 11635449
    Abstract: An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic-force microscope device.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: April 25, 2023
    Assignee: BRUKER NANO, INC.
    Inventors: Sergey Osechinskiy, Anthonius Ruiter, Bede Pittenger, Syed-Asif Syed-Amanulla
  • Publication number: 20220252638
    Abstract: An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic-force microscope device.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 11, 2022
    Applicant: BRUKER NANO, INC.
    Inventors: Sergey Osechinskiy, Anthonius Ruiter, Bede Pittenger, Syed-Asif Syed-Amanulla
  • Patent number: 11307220
    Abstract: An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic-force microscope device.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: April 19, 2022
    Assignee: BRUKER NANO
    Inventors: Sergey Osechinskiy, Anthonius Ruiter, Bede Pittenger, Syed-Asif Syed-Amanulla
  • Publication number: 20210239732
    Abstract: An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic-force microscope device.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 5, 2021
    Inventors: Sergey Osechinskiy, Anthonius Ruiter, Bede Pittenger, Syed-Asif Syed-Amanulla
  • Patent number: 11029330
    Abstract: An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic-force microscope device.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: June 8, 2021
    Assignee: BRUKER NANO, INC.
    Inventors: Sergey Osechinskiy, Anthonius Ruiter, Bede Pittenger, Syed-Asif Syed-Amanulla
  • Publication number: 20200041541
    Abstract: An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic-force microscope device.
    Type: Application
    Filed: August 2, 2019
    Publication date: February 6, 2020
    Inventors: Sergey Osechinskiy, Anthonius Ruiter, Bede Pittenger, Syed-Asif Syed-Amanulla
  • Patent number: 10161960
    Abstract: System and method for optical alignment of a near-field system, employing reiterative analysis of amplitude (irradiance) and phase maps of irradiated field obtained in back-scattered light while adjusting the system to arrive at field pattern indicative of and sensitive to a near-field optical wave produced by diffraction-limited irradiation of a tip of the near-field system. Demodulation of optical data representing such maps is carried out at different harmonics of probe-vibration frequency. Embodiments are operationally compatible with methodology of chemical nano-identification of sample utilizing normalized near-field spectroscopy, and may utilize suppression of background contribution to collected data based on judicious coordination of data acquisition with motion of the tip. Such coordination may be defined without knowledge of separation between the tip and sample. Computer program product with instructions effectuating the method and operation of the system.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: December 25, 2018
    Assignee: BRUKER NANO, INCORPORATED
    Inventors: Sergey Osechinskiy, Gregory Andreev
  • Publication number: 20180364276
    Abstract: System and method for optical alignment of a near-field system, employing reiterative analysis of amplitude (irradiance) and phase maps of irradiated field obtained in back-scattered light while adjusting the system to arrive at field pattern indicative of and sensitive to a near-field optical wave produced by diffraction-limited irradiation of a tip of the near-field system. Demodulation of optical data representing such maps is carried out at different harmonics of probe-vibration frequency. Embodiments are operationally compatible with methodology of chemical nano-identification of sample utilizing normalized near-field spectroscopy, and may utilize suppression of background contribution to collected data based on judicious coordination of data acquisition with motion of the tip. Such coordination may be defined without knowledge of separation between the tip and sample. Computer program product with instructions effectuating the method and operation of the system.
    Type: Application
    Filed: August 6, 2018
    Publication date: December 20, 2018
    Inventors: Sergey Osechinskiy, Gregory Andreev
  • Patent number: 10067159
    Abstract: System and method for optical alignment of a near-field system, employing reiterative analysis of amplitude (irradiance) and phase maps of irradiated field obtained in back-scattered light while adjusting the system to arrive at field pattern indicative of and sensitive to a near-field optical wave produced by diffraction-limited irradiation of a tip of the near-field system. Demodulation of optical data representing such maps is carried out at different harmonics of probe-vibration frequency. Embodiments are operationally compatible with methodology of chemical nano-identification of sample utilizing normalized near-field spectroscopy, and may utilize suppression of background contribution to collected data based on judicious coordination of data acquisition with motion of the tip. Such coordination may be defined without knowledge of separation between the tip and sample. Computer program product with instructions effectuating the method and operation of the system.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: September 4, 2018
    Assignee: BRUKER NANO, INC.
    Inventors: Gregory Andreev, Sergey Osechinskiy
  • Patent number: 9933453
    Abstract: Apparatus and method for nano-identification a sample by measuring, with the use of evanescent waves, optical spectra of near-field interaction between the sample and optical nanoantenna oscillating at nano-distance above the sample and discriminating background backscattered radiation not sensitive to such near-field interaction. Discrimination may be effectuated by optical data acquisition at periodically repeated moments of nanoantenna oscillation without knowledge of distance separating nanoantenna and sample. Measurement includes chemical identification of sample on nano-scale, during which absolute value of phase corresponding to near-field radiation representing said interaction is measured directly, without offset. Calibration of apparatus and measurement is provided by performing, prior to sample measurement, a reference measurement of reference sample having known index of refraction.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: April 3, 2018
    Assignee: BRUKER NANO, INC.
    Inventors: Gregory Andreev, Sergey Osechinskiy, Stephen Minne, Chanmin Su
  • Publication number: 20180059136
    Abstract: Apparatus and method for nano-identification a sample by measuring, with the use of evanescent waves, optical spectra of near-field interaction between the sample and optical nanoantenna oscillating at nano-distance above the sample and discriminating background backscattered radiation not sensitive to such near-field interaction. Discrimination may be effectuated by optical data acquisition at periodically repeated moments of nanoantenna oscillation without knowledge of distance separating nanoantenna and sample. Measurement includes chemical identification of sample on nano-scale, during which absolute value of phase corresponding to near-field radiation representing said interaction is measured directly, without offset. Calibration of apparatus and measurement is provided by performing, prior to sample measurement, a reference measurement of reference sample having known index of refraction.
    Type: Application
    Filed: October 24, 2017
    Publication date: March 1, 2018
    Inventors: Gregory Andreev, Sergey Osechinskiy, Stephen Minne, Chanmin Su
  • Patent number: 9846178
    Abstract: Apparatus and method for nano-identification a sample by measuring, with the use of evanescent waves, optical spectra of near-field interaction between the sample and optical nanoantenna oscillating at nano-distance above the sample and discriminating background backscattered radiation not sensitive to such near-field interaction. Discrimination may be effectuated by optical data acquisition at periodically repeated moments of nanoantenna oscillation without knowledge of distance separating nanoantenna and sample. Measurement includes chemical identification of sample on nano-scale, during which absolute value of phase corresponding to near-field radiation representing said interaction is measured directly, without offset. Calibration of apparatus and measurement is provided by performing, prior to sample measurement, a reference measurement of reference sample having known index of refraction.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: December 19, 2017
    Assignee: BRUKER NANO, INC.
    Inventors: Gregory Andreev, Sergey Osechinskiy, Stephen Minne, Chanmin Su
  • Publication number: 20170219621
    Abstract: System and method for optical alignment of a near-field system, employing reiterative analysis of amplitude (irradiance) and phase maps of irradiated field obtained in back-scattered light while adjusting the system to arrive at field pattern indicative of and sensitive to a near-field optical wave produced by diffraction-limited irradiation of a tip of the near-field system. Demodulation of optical data representing such maps is carried out at different harmonics of probe-vibration frequency. Embodiments are operationally compatible with methodology of chemical nano-identification of sample utilizing normalized near-field spectroscopy, and may utilize suppression of background contribution to collected data based on judicious coordination of data acquisition with motion of the tip. Such coordination may be defined without knowledge of separation between the tip and sample. Computer program product with instructions effectuating the method and operation of the system.
    Type: Application
    Filed: February 17, 2015
    Publication date: August 3, 2017
    Applicant: BRUKER NANO, INCORPORATED
    Inventors: Gregory Andreev, Sergey Osechinskiy
  • Publication number: 20160356809
    Abstract: Apparatus and method for nano-identification a sample by measuring, with the use of evanescent waves, optical spectra of near-field interaction between the sample and optical nanoantenna oscillating at nano-distance above the sample and discriminating background backscattered radiation not sensitive to such near-field interaction. Discrimination may be effectuated by optical data acquisition at periodically repeated moments of nanoantenna oscillation without knowledge of distance separating nanoantenna and sample. Measurement includes chemical identification of sample on nano-scale, during which absolute value of phase corresponding to near-field radiation representing said interaction is measured directly, without offset. Calibration of apparatus and measurement is provided by performing, prior to sample measurement, a reference measurement of reference sample having known index of refraction.
    Type: Application
    Filed: August 18, 2016
    Publication date: December 8, 2016
    Applicant: BRUKER NANO, INC.
    Inventors: Gregory Andreev, Sergey Osechinskiy, Stephen Minne, Chanmin Su
  • Patent number: 9448252
    Abstract: Apparatus and method for nano-identification a sample by measuring, with the use of evanescent waves, optical spectra of near-field interaction between the sample and optical nanoantenna oscillating at nano-distance above the sample and discriminating background backscattered radiation not sensitive to such near-field interaction. Discrimination may be effectuated by optical data acquisition at periodically repeated moments of nanoantenna oscillation without knowledge of distance separating nanoantenna and sample. Measurement includes chemical identification of sample on nano-scale, during which absolute value of phase corresponding to near-field radiation representing said interaction is measured directly, without offset. Calibration of apparatus and measurement is provided by performing, prior to sample measurement, a reference measurement of reference sample having known index of refraction.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: September 20, 2016
    Assignee: BRUKER NANO, INCORPORATED
    Inventors: Gregory Andreev, Sergey Osechinskiy, Stephen Minne, Chanmin Su