Patents by Inventor Sergey Shokhor

Sergey Shokhor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9207953
    Abstract: A method and apparatus for managing proxy autoconfiguration for a multihomed client. A client browser may employ a combined autoconfiguration module to split traffic based on a destination address of the traffic. The traffic may be split among at least two proxy servers. A proxy configuration manager may be employed to receive configuration information associated with each of the proxy servers. The proxy configuration manager enables the combined autoconfiguration module to be created based, in part, on the received configuration information. The proxy configuration manager further enables the client browser to split the traffic, based at least in part on the destination address.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: December 8, 2015
    Assignee: F5 Networks, Inc.
    Inventor: Sergey Shokhor
  • Patent number: 8560709
    Abstract: An apparatus and method are directed to managing access to an enterprise resource over a virtual private network by employing a dynamic policy. A client device is configured to log into a network device. The network device receives information about the client device, including information about its configuration and environment. Based, in part, on received information a policy for access is applied to the client device. For example, in one embodiment, the policy may allow only email access from a public kiosk client device, but full intranet access from an enterprise configured client device. The policy may further enable a restriction for the client device that may restrict, for example, what documents may be saved by the client device. In one embodiment, the restriction is enabled using a virtual sandbox.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: October 15, 2013
    Assignee: F5 Networks, Inc.
    Inventors: Sergey Shokhor, Andrey Shigapov
  • Patent number: 7558848
    Abstract: An apparatus and method are directed to managing a policy-based access to a resource employing dynamic client integrity checking. The system may include a client device configured to log into a server. The server may provide a component to the client device. The component is configured to provide integrity information about the client device back to the server. The component may provide updates to the integrity information at a pre-determined schedule, thereby monitoring changes to the integrity of the client device during a connected session. Based, in part, on the received integrity information a policy for access is applied to the client device. In one embodiment, access may be increased to the resource. In another embodiment, the policy may deny access to the resource, if it is determined that the client device has an enabled network sniffer, an improperly configured antivirus application, or the like.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: July 7, 2009
    Assignee: F5 Networks, Inc.
    Inventor: Sergey Shokhor
  • Publication number: 20070046165
    Abstract: A pixel structure and an edge-emitter field-emission display device having a first substrate or backplate including a cathode disposed thereon and a second substrate or faceplate including an anode disposed thereon, wherein the anode on the second substrate or faceplate has a light emitting film. The cathode may define a first bus of an X-Y bus array and the anode may define a second bus of the X-Y bus array. Alternatively, the first substrate may further include a control gate disposed thereon, wherein the cathode defines a first bus of an X-Y bus array and the control gate defines a second bus of the X-Y bus array.
    Type: Application
    Filed: October 30, 2006
    Publication date: March 1, 2007
    Inventors: Alexander Kastalsky, Sergey Shokhor, Frank DiSanto, Denis Krusos, Boris Gorfinkel, Nikolai Abanshin
  • Patent number: 7176478
    Abstract: New, hybrid vacuum electron devices are proposed, in which the electrons are extracted from the nanotube into vacuum. Each nanotube is either placed on the cathode electrode individually or grown normally to the cathode plane. Arrays of the nanotubes are also considered to multiply the output current. Two- and three-terminal device configurations are discussed. In all the cases considered, the device designs are such that both input and output capacitances are extremely low, while the efficiency of the electron extraction into vacuum is very high, so that the estimated operational frequencies are expected to be in a tera-hertz range. New vacuum triode structure with ballistic electron propagation along the nanotube is also considered.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: February 13, 2007
    Inventors: Alexander Kastalsky, Sergey Shokhor
  • Patent number: 7129626
    Abstract: A pixel structure and an edge-emitter field-emission display device having a first substrate or backplate including a cathode disposed thereon and a second substrate or faceplate including an anode disposed thereon, wherein the anode on the second substrate or faceplate has a light emitting film. The cathode may define a first bus of an X-Y bus array and the anode may define a second bus of the X-Y bus array. Alternatively, the first substrate may further include a control gate disposed thereon, wherein the cathode defines a first bus of an X-Y bus array and the control gate defines a second bus of the X-Y bus array.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: October 31, 2006
    Assignee: Copytele, Inc.
    Inventors: Alexander Kastalsky, Sergey Shokhor, Frank J. DiSanto, Denis A. Krusos, Boris Gorfinkel, Nikolai Abanshin
  • Patent number: 7102157
    Abstract: New, hybrid vacuum electronic devices are proposed, in which the electrons are extracted from the nanotube into vacuum. Each nanotube is either placed on the cathode electrode individually or grown normally to the cathode plane. Arrays of the nanotubes are also considered to multiply the output current. Two- and three-terminal device configurations are discussed. In all the cases considered, the device designs are such that both input and output capacitances are extremely low, while the efficiency of the electron extraction into vacuum is very high, so that the estimated operational frequencies are expected to be in a tera-hertz range. New vacuum triode structure with ballistic electron propagation along the nanotube is also considered.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: September 5, 2006
    Inventors: Alexander Kastalsky, Sergey Shokhor
  • Publication number: 20050247929
    Abstract: New, hybrid vacuum electronic devices are proposed, in which the electrons are extracted from the nanotube into vacuum. Each nanotube is either placed on the cathode electrode individually or grown normally to the cathode plane. Arrays of the nanotubes are also considered to multiply the output current. Two- and three-terminal device configurations are discussed. In all the cases considered, the device designs are such that both input and output capacitances are extremely low, while the efficiency of the electron extraction into vacuum is very high, so that the estimated operational frequencies are expected to be in a tera-hertz range. New vacuum triode structure with ballistic electron propagation along the nanotube is also considered.
    Type: Application
    Filed: May 23, 2005
    Publication date: November 10, 2005
    Inventors: Alexander Kastalsky, Sergey Shokhor
  • Publication number: 20050168131
    Abstract: A field emission display comprises an anode comprising a matrix of pixels and a cathode comprising an insulating layer defining a plurality of wells having a conductor therein. A first conductive layer forms a plurality of conductive pads, each of the conductive pads corresponding to one of the wells. A plurality of nanostructures are electrically coupled to the conductive pads. A second conductive layer is formed over the insulating layer and provides a plurality of gate electrodes. When a potential between the conductive pads and gate electrodes exceeds a threshold voltage, the nanostructures emit electrons that impinge on the pixels.
    Type: Application
    Filed: October 27, 2004
    Publication date: August 4, 2005
    Inventors: Frank DiSanto, Denis Krusos, Sergey Shokhor, Alexander Kastalsky, Anthony Campisi
  • Publication number: 20050161668
    Abstract: New, hybrid vacuum electron devices are proposed, in which the electrons are extracted from the nanotube into vacuum. Each nanotube is either placed on the cathode electrode individually or grown normally to the cathode plane. Arrays of the nanotubes are also considered to multiply the output current. Two- and three-terminal device configurations are discussed. In all the cases considered, the device designs are such that both input and output capacitances are extremely low, while the efficiency of the electron extraction into vacuum is very high, so that the estimated operational frequencies are expected to be in a tera-hertz range. New vacuum triode structure with ballistic electron propagation along the nanotube is also considered.
    Type: Application
    Filed: January 26, 2004
    Publication date: July 28, 2005
    Inventors: Alexander Kastalsky, Sergey Shokhor
  • Patent number: 6674242
    Abstract: A Reflective Field Emission Display (FED) system using reflective field emission pixel elements is disclosed. In the FED system disclosed, each pixel elements is composed of at least one edge emitter that is operable to emit electrons and at least one reflector that is operable to first attract and then reflect the emitted electrons onto a transparent layer that is operable to attract the reflected electrons. The transparent anode layer is oppositely positioned with respect to the cathode or emitter edge. In a one aspect of the invention, a phosphor layer interposed between the transparent layer and the pixel element produces a light photon as reflected electrons are attracted to the transparent layer. In another aspect of the invention, a plurality of phosphor layers are applied to the transparent layer to produce a color display when reflected electrons are attracted to the transparent layer.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: January 6, 2004
    Assignee: Copytele, Inc.
    Inventors: Alexander Kastalsky, Sergey Shokhor, Frank J. DiSanto, Denis A. Krusos, Boris Gorfinkel, Nikolai Abanshin
  • Patent number: 6614149
    Abstract: A Reflective Field Emission Display system, components and methods for fabricating the components. In the FED system, a plurality of reflective edge emission pixel elements are arranged in a matrix of N rows and M columns, the pixel elements contain an edge emitter that is operable to emit electrons and a reflector that is operable to extract and laterally reflect emitted electrons. A collector layer, laterally disposed from said reflector layer is operable to attract the reflected electrons. Deposited on the collector layer is a phosphor layer that emits a photon of a known wavelength when activated by an attracted electron. A transparent layer that is oppositely positioned with respect to the pixel elements is operable to attract reflected electrons and prevent reflected electrons from striking the phosphor layer. Color displays are further contemplated by incorporating individually controlled sub-pixel elements in each of the pixel elements.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: September 2, 2003
    Assignees: CopyTele, Inc., Volga Svet Ltd.
    Inventors: Alexander Kastalsky, Sergey Shokhor, Frank J. DiSanto, Denis A. Krusos, Boris Gorfinkel, Nikolai Abanshin
  • Publication number: 20020149322
    Abstract: A Reflective Field Emission Display (FED) system using reflective field emission pixel elements is disclosed. In the FED system disclosed, each pixel elements is composed of at least one edge emitter that is operable to emit electrons and at least one reflector that is operable to first attract and then reflect the emitted electrons onto a transparent layer that is operable to attract the reflected electrons. The transparent anode layer is oppositely positioned with respect to the cathode or emitter edge. In a one aspect of the invention, a phosphor layer interposed between the transparent layer and the pixel element produces a light photon as reflected electrons are attracted to the transparent layer. In another aspect of the invention, a plurality of phosphor layers are applied to the transparent layer to produce a color display when reflected electrons are attracted to the transparent layer.
    Type: Application
    Filed: March 20, 2002
    Publication date: October 17, 2002
    Inventors: Alexander Kastalsky, Sergey Shokhor, Frank J. DiSanto, Denis A. Krusos, Boris Gorfinkel, Nikolai Abanshin
  • Publication number: 20020135284
    Abstract: A Reflective Field Emission Display system, components and methods for fabricating the components is disclosed. In the FED system disclosed, a plurality of reflective edge emission pixel elements are arranged in a matrix of N rows and M columns, the pixel elements contain an edge emitter that is operable to emit electrons and a reflector that is operable to extract and laterally reflect emitted electrons. A collector layer, laterally disposed from said reflector layer is operable to attract the reflected electrons. Deposited on the collector layer is a phosphor layer that emits a photon of a known wavelength when activated by an attracted electron. A transparent layer that is oppositely positioned with respect to the pixel elements is operable to attract reflected electrons and prevent reflected electrons from striking the phosphor layer. Color displays are further contemplated by incorporating individually controlled sub-pixel elements in each of the pixel elements.
    Type: Application
    Filed: March 20, 2002
    Publication date: September 26, 2002
    Inventors: Alexander Kastalsky, Sergey Shokhor, Frank J. DiSanto, Denis A. Krusos, Boris Gorfinkel, Nikolai Abanshin
  • Publication number: 20020134978
    Abstract: A pixel structure and an edge-emitter field-emission display device having a first substrate or backplate including a cathode disposed thereon and a second substrate or faceplate including an anode disposed thereon, wherein the anode on the second substrate or faceplate has a light emitting film. The cathode may define a first bus of an X-Y bus array and the anode may define a second bus of the X-Y bus array. Alternatively, the first substrate may further include a control gate disposed thereon, wherein the cathode defines a first bus of an X-Y bus array and the control gate defines a second bus of the X-Y bus array.
    Type: Application
    Filed: March 20, 2002
    Publication date: September 26, 2002
    Inventors: Alexander Kastalsky, Sergey Shokhor, Frank J. DiSanto, Denis A. Krusos, Boris Gorfinkel, Nikolai Abanshin
  • Publication number: 20020030439
    Abstract: A display device is disclosed including a plurality of pixels arranged in a predetermined configuration. Each pixel including a mirror element disposed over a flat surface. A light modulating material disposed over the mirror element for selectively modulating a predetermined wave length of light received from an external source by transitioning between a first and a second state. The light modulating material in the first state causes destructive interference in the predetermined wave length of light and in the second state causes constructive interference in the predetermined wave length of light.
    Type: Application
    Filed: July 26, 2001
    Publication date: March 14, 2002
    Inventors: Michael Gurvitch, Maurice Halioua, Alexander Kastalsky, Sylvain Naar, Sergey Shokhor
  • Patent number: 6329748
    Abstract: A display device utilizes a plurality of pixels arranged in a predetermined configuration for recording and displaying information. Each pixel includes a substrate and a light modulating material for selectively modulating a predetermined wave length of light by transitoning between a first and a second state in response to a heater element. The light modulating material in the first state causes destructive interference in the predetermined wave length of light and in the second state causes constructive interference in the predetermined wave length of light. The pixel structure is buried within an aerogel thereby minimizing the heat dissipation rate from the pixels.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: December 11, 2001
    Assignee: Copytele Inc.
    Inventors: Alexander Kastalsky, Maurice Halioua, Sergey Shokhor, Sylvain Naar, Feliks Chudnovskiy
  • Patent number: 6097145
    Abstract: A display device utilizes a plurality of pixels arranged in a predetermined configuration for recording and displaying information. Each pixel includes a substrate and a light modulating material for selectively modulating a predetermined wave length of light by transitioning between a first and a second state in response to a heater element. The light modulating material in the first state causes destructive interference in the predetermined wave length of light and in the second state causes constructive interference in the predetermined wave length of light. The pixel structure is buried within an aerogel thereby minimizing the heat dissipation rate from the pixels.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: August 1, 2000
    Assignee: Copytele, Inc.
    Inventors: Alexander Kastalsky, Maurice Halioua, Sergey Shokhor, Sylvain Naar, Feliks Chudnovskiy
  • Patent number: 5896005
    Abstract: A display device is disclosed including a plurality of pixels arranged in a predetermined configuration. Each pixel including a mirror element disposed over a flat surface. A light modulating material disposed over the mirror element for selectively modulating a predetermined wave length of light received from an external source by transitioning between a first and a second state. The light modulating material in the first state causes destructive interference in the predetermined wave length of light and in the second state causes constructive interference in the predetermined wave length of light.
    Type: Grant
    Filed: January 29, 1997
    Date of Patent: April 20, 1999
    Assignee: Copytele, Inc.
    Inventors: Michael Gurvitch, Maurice Halioua, Alexander Kastalsky, Sylvain Naar, Sergey Shokhor