Patents by Inventor Sergey Yurevich Ten

Sergey Yurevich Ten has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11740424
    Abstract: A structured optical fiber cabling system configured to connect first and second layers of switches in a mesh network is disclosed. The system comprises groups of fiber optic ports arranged side-by-side, with each group including a plurality of the fiber optic ports distributed in a vertical direction. A plurality of fiber optic jumper assemblies each include a horizontal segment and a plurality of legs and fiber optic connectors extending from the horizontal segment, with each fiber optic connector configured to connect to a corresponding fiber optic port of the plurality of the fiber optic ports at the same vertical location in each group of the array.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: August 29, 2023
    Assignee: Corning Research & Development Corporation
    Inventors: Michael Alan Bell, Eric Raymond Logan, Claudio Mazzali, Brian Keith Rhoney, Sergey Yurevich Ten
  • Publication number: 20220317367
    Abstract: In some embodiments, an optical fiber transmission link, includes a length of dispersion compensating fiber (DCF), the dispersion compensating fiber coupled to a length of single-mode fiber (SMF) having a zero dispersion wavelength of 1300 nm to 1324 nm; wherein the optical fiber transmission link comprising the dispersion compensating fiber coupled to the single-mode fiber and operating at wavelengths between 1265 nm and 1375 nm increases maximum link lengths of the optical fiber transmission link by more than 60% as compared to the link length of the optical fiber transmission link with the single-mode fiber only; and wherein the maximum link length is calculated from the maximum allowed positive and negative accumulated dispersion at wavelengths between 1265 nm and 1375 nm.
    Type: Application
    Filed: March 24, 2022
    Publication date: October 6, 2022
    Inventors: Pushkar Tandon, Sergey Yurevich Ten
  • Publication number: 20220146773
    Abstract: A structured optical fiber cabling system configured to connect first and second layers of switches in a mesh network is disclosed. The system comprises groups of fiber optic ports arranged side-by-side, with each group including a plurality of the fiber optic ports distributed in a vertical direction. A plurality of fiber optic jumper assemblies each include a horizontal segment and a plurality of legs and fiber optic connectors extending from the horizontal segment, with each fiber optic connector configured to connect to a corresponding fiber optic port of the plurality of the fiber optic ports at the same vertical location in each group of the array.
    Type: Application
    Filed: January 26, 2022
    Publication date: May 12, 2022
    Inventors: Michael Alan Bell, Eric Raymond Logan, Claudio Mazzali, Brian Keith Rhoney, Sergey Yurevich Ten
  • Patent number: 11269152
    Abstract: A structured optical fiber cabling system configured to connect first and second layers of switches in a mesh network is disclosed. The system comprises a plurality of fiber optic modules each including a plurality of first fiber optic ports distributed in a vertical direction when the fiber optic modules are installed in a chassis. A plurality of fiber optic jumper assemblies each include a horizontal segment and a plurality of legs and fiber optic connectors extending from the horizontal segment, with each fiber optic connector configured to connect to a corresponding fiber optic port of the plurality of first fiber optic ports at the same vertical location in each fiber optic module.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: March 8, 2022
    Assignee: Corning Research & Development Corporation
    Inventors: Michael Alan Bell, Eric Raymond Logan, Claudio Mazzali, Brian Keith Rhoney, Sergey Yurevich Ten
  • Publication number: 20210080671
    Abstract: A structured optical fiber cabling system configured to connect first and second layers of switches in a mesh network is disclosed. The system comprises a plurality of fiber optic modules each including a plurality of first fiber optic ports distributed in a vertical direction when the fiber optic modules are installed in a chassis. A plurality of fiber optic jumper assemblies each include a horizontal segment and a plurality of legs and fiber optic connectors extending from the horizontal segment, with each fiber optic connector configured to connect to a corresponding fiber optic port of the plurality of first fiber optic ports at the same vertical location in each fiber optic module.
    Type: Application
    Filed: September 14, 2020
    Publication date: March 18, 2021
    Inventors: Michael Alan Bell, Eric Raymond Logan, Claudio Mazzali, Brian Keith Rhoney, Sergey Yurevich Ten
  • Publication number: 20210032926
    Abstract: A window structure includes first, second, and third glass layers. The third glass layer is positioned between the first and second glass layers. First and second low thermal emissivity coatings are on respective first and second opposing surfaces of the third glass layer to form a Fabry-Perot etalon that is configured as a bandpass filter having a designated frequency passband that includes at least one frequency in a range of frequencies from (6) gigahertz to (80) gigahertz.
    Type: Application
    Filed: March 28, 2019
    Publication date: February 4, 2021
    Inventors: Thomas Bertin-Mourot, Nicholas Francis Borrelli, Sergey Yurevich Ten, Yuval Zinger
  • Publication number: 20200408973
    Abstract: A system includes a window and a microwave amplifier positioned proximate the window. The window has a low-E coating. The microwave amplifier includes a substrate and multiple concentric rings of material that form a Fresnel zone plate lens. The concentric rings are attached to the substrate. The Fresnel zone plate lens is configured to focus an attenuated microwave signal, which is attenuated by the low-E coating of the window, on an antenna, which may (1) amplify the attenuated microwave signal by at least 20 dB and/or (2) provide an image at the antenna such that an area of the Fresnel zone plate lens divided by an area of the image is at least 100 and/or such that the area of the image is approximately equal to an area of the antenna. The attenuated microwave signal has a designated frequency in a range of frequencies from 6 GHz to 80 GHz.
    Type: Application
    Filed: March 5, 2019
    Publication date: December 31, 2020
    Inventors: Nicholas Francis Borrelli, Wageesha Senaratne, Sergey Yurevich Ten
  • Publication number: 20190217901
    Abstract: The roof of a vehicle includes a passive cooling layer overlaying an outward facing surface of the roof such that the layer is exposed to sunlight exterior to the vehicle. The layer includes a polymer having molecular structures with Si—O—Si linkages. The layer has relatively high emittance over a peak spectrum for solar heating.
    Type: Application
    Filed: January 25, 2019
    Publication date: July 18, 2019
    Inventors: Nicholas Francis Borrelli, Gregory Lee Bucher, Wageesha Senaratne, Sergey Yurevich Ten
  • Patent number: 8995803
    Abstract: An optical fiber link suitable for use in a mode division multiplexing (MDM) optical transmission system is disclosed. The link has a first optical fiber having a core which supports the propagation and transmission of an optical signal with X LP modes at a wavelength of 1550 nm, wherein X is an integer greater than 1 and less than or equal to 20, the first fiber having a positive differential mode group delay between the LP01 and LP11 modes at a wavelength between 1530-1570. The link also has a second optical fiber having a core which supports the propagation and transmission of an optical signal with Y LP modes at a wavelength of 1550 nm, wherein Y is an integer greater than 1 and less than or equal to 20, said optical fiber having a negative differential mode group delay between the LP01 and LP11 modes at a wavelength between 1530-1570.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: March 31, 2015
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Ming-Jun Li, Shenping Li, Sergey Yurevich Ten
  • Patent number: 8538218
    Abstract: A long haul optical fiber transmission system includes a transmitter having a modulated bit rate of at least 40 Gb/s. A receiver is optically coupled to the transmitter with a composite optical fiber span. The optical fiber includes a first optical fiber coupled to the transmitter and a second optical fiber coupled to the first optical fiber. The first optical fiber has an effective area of at least 120 ?m2, an attenuation of less than 0.180 dB/km, and a length L1 from about 30 km to about 90 km. The second optical fiber has an effective area of less than 120 ?m2, an attenuation of less than 0.180 dB/km, and a length L2. The sum of L1 and L2 is at least 160 km. The composite optical fiber span does not include a repeater along the length of the span between the transmitter and the receiver or any rare earth dopants.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: September 17, 2013
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, John David Downie, Jason Edward Hurley, Andrey Kobyakov, Sergey Yurevich Ten, Xianming Zhu
  • Publication number: 20130216181
    Abstract: An optical fiber link suitable for use in a mode division multiplexing (MDM) optical transmission system is disclosed. The link has a first optical fiber having a core which supports the propagation and transmission of an optical signal with X LP modes at a wavelength of 1550 nm, wherein X is an integer greater than 1 and less than or equal to 20, the first fiber having a positive differential mode group delay between the LP01 and LP11 modes at a wavelength between 1530-1570. The link also has a second optical fiber having a core which supports the propagation and transmission of an optical signal with Y LP modes at a wavelength of 1550 nm, wherein Y is an integer greater than 1 and less than or equal to 20, said optical fiber having a negative differential mode group delay between the LP01 and LP11 modes at a wavelength between 1530-1570.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 22, 2013
    Inventors: Scott Robertson Bickham, Ming-Jun Li, Shenping Li, Sergey Yurevich Ten
  • Publication number: 20120219301
    Abstract: An optical fiber communication system includes hollow core fiber coupled between a transmitter device and a receiver device. Both hollow core fiber and solid core fiber may be optically coupled between the transmitter and receiver devices, with the hollow core fiber preceding the solid core fiber. A Raman pump laser may be coupled to the solid core fiber to provide distributed Raman amplification in the solid core fiber. A plurality of series connected spans of hollow and solid core fiber may be employed. First and second transmission lines each having a hollow core fiber may be provided in a single cable.
    Type: Application
    Filed: February 25, 2011
    Publication date: August 30, 2012
    Inventors: Karl William Koch, III, Sergey Yurevich Ten, James Andrew West
  • Publication number: 20110222863
    Abstract: A long haul optical fiber transmission system includes a transmitter having a modulated bit rate of at least 40 Gb/s. A receiver is optically coupled to the transmitter with a composite optical fiber span. The optical fiber includes a first optical fiber coupled to the transmitter and a second optical fiber coupled to the first optical fiber. The first optical fiber has an effective area of at least 120 ?m2, an attenuation of less than 0.180 dB/km, and a length L1 from about 30 km to about 90 km. The second optical fiber has an effective area of less than 120 ?m2, an attenuation of less than 0.180 dB/km, and a length L2. The sum of L1 and L2 is at least 160 km. The composite optical fiber span does not include a repeater along the length of the span between the transmitter and the receiver or any rare earth dopants.
    Type: Application
    Filed: February 18, 2011
    Publication date: September 15, 2011
    Inventors: Scott Robertson Bickham, John David Downie, Jason Edward Hurley, Andrey Kobyakov, Sergey Yurevich Ten, Xianming Zhu
  • Patent number: 6118563
    Abstract: Four-wave mixing of transmitted signals in a lightwave transmission system is reduced by (1) grouping the signals in pairs of adjacent frequencies, (2) increasing the frequency of every other pair by a fixed amount, and (3) decreasing the frequency of the remaining pairs by the same fixed amount, where the fixed amount is less than the permitted variation of the ITU grid.
    Type: Grant
    Filed: September 18, 1998
    Date of Patent: September 12, 2000
    Assignee: Corning Incorporated
    Inventors: Aleksandra Boskovic, Valeria Loureiro da Silva, Sergey Yurevich Ten