Patents by Inventor Sergey Zotchev

Sergey Zotchev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11505791
    Abstract: The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: November 22, 2022
    Assignee: The Regents of the University of California
    Inventors: Jeffrey L. Fortman, Andrew Hagen, Leonard Katz, Jay D. Keasling, Sean Poust, Jingwei Zhang, Sergey Zotchev
  • Patent number: 11021525
    Abstract: The present invention provides for a synthetic transcription factor (TF) comprising a first peptide capable of binding a target ligand, a second peptide capable of binding a target DNA, and a peptide linker linking the first and second peptides. The present invention also provide for a system for modulating the mutagenesis frequency of a host cell. The host cell has a mutator rate (R) which is inversely proportional to a phenotypic trait (P).
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: June 1, 2021
    Assignee: The Regents of the University of California
    Inventors: Howard H. Chou, Jay D. Keasling, Sergey Zotchev
  • Publication number: 20200270597
    Abstract: The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.
    Type: Application
    Filed: December 2, 2019
    Publication date: August 27, 2020
    Inventors: Jeffrey L. Fortman, Andrew Hagen, Leonard Katz, Jay D. Keasling, Sean Poust, Jingwei Zhang, Sergey Zotchev
  • Patent number: 10494625
    Abstract: The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: December 3, 2019
    Assignee: The Regents of the University of California
    Inventors: Jeffrey L. Fortman, Andrew Hagen, Leonard Katz, Jay D. Keasling, Sean Poust, Jingwei Zhang, Sergey Zotchev
  • Patent number: 10047363
    Abstract: A nucleic acid molecule comprises a nucleotide sequence: as shown in SEQ ID No. 1, which is the complement of SEQ ID No. 1, which is degenerate with SEQ ID No. 1, or which has at least 85% sequence identity with SEQ ID No. 1, or which is a part of such a sequence. The nucleic acid molecule encodes or is a complementary to a nucleic acid molecule encoding one or more polypeptides, or comprises or is complementary to a nucleic acid molecule comprising one or more genetic elements, having functional activity in the synthesis of a polyketide-based or macrolactam molecule. The nucleic acid molecule may be used to prepare a modified BE-14106 biosynthetic gene cluster for the preparation of a modified BE-14106 molecule.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: August 14, 2018
    Assignee: SINTEF TTO AS
    Inventors: Hanne Jørgensen, Havard Sletta, Trond Erling Ellingsen, Espen Fjaervik, Kristin Fløgstad Degnes, Geir Klinkenberg, Per Bruheim, Sergey Zotchev
  • Publication number: 20170015990
    Abstract: The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.
    Type: Application
    Filed: May 2, 2016
    Publication date: January 19, 2017
    Inventors: Jeffrey L. Fortman, Andrew Hagen, Leonard Katz, Jay D. Keasling, Sean Poust, Jingwei Zhang, Sergey Zotchev
  • Patent number: 9334514
    Abstract: The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: May 10, 2016
    Assignee: The Regents of the University of California
    Inventors: Jeffrey L. Fortman, Andrew Hagen, Leonard Katz, Jay D. Keasling, Sean Poust, Jingwei Zhang, Sergey Zotchev
  • Publication number: 20160060636
    Abstract: A nucleic acid molecule comprises a nucleotide sequence: as shown in SEQ ID No. 1, which is the complement of SEQ ID No. 1, which is degenerate with SEQ ID No. 1, or which has at least 85% sequence identity with SEQ ID No. 1, or which is a part of such a sequence. The nucleic acid molecule encodes or is a complementary to a nucleic acid molecule encoding one or more polypeptides, or comprises or is complementary to a nucleic acid molecule comprising one or more genetic elements, having functional activity in the synthesis of a polyketide-based or macrolactam molecule. The nucleic acid molecule may be used to prepare a modified BE-14106 biosynthetic gene cluster for the preparation of a modified BE-14106 molecule.
    Type: Application
    Filed: November 11, 2015
    Publication date: March 3, 2016
    Inventors: Hanne JØRGENSEN, Havard SLETTA, Trond Erling ELLINGSEN, Espen FJAERVIK, Kristin Fløgstad DEGNES, Geir KLINKENBERG, Per BRUHEIM, Sergey ZOTCHEV
  • Patent number: 9217150
    Abstract: The present invention provides a nucleic acid molecule comprising: (a) a nucleotide sequence as shown in SEQ ID No. 1; or (b) a nucleotide sequence which is the complement of SEQ ID No. 1; or (c) a nucleotide sequence which is degenerate with SEQ ID No. 1; or (d) a nucleotide sequence having at least 85% sequence identity (preferably at least 87%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity) with SEQ ID No. 1; or (e) a part of any one of (a) to (d), wherein said nucleic acid molecule encodes or is a complementary to a nucleic acid molecule encoding one or more polypeptides, or comprises or is complementary to a nucleic acid molecule comprising one or more genetic elements, having functional activity in the synthesis of a polyketide-based or macrolactam molecule.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: December 22, 2015
    Assignee: SINTEF TTO AS
    Inventors: Hanne Jørgensen, Trond Erling Ellingsen, Kristin Fløgstad Degnes, Per Bruheim, Håvard Sletta, Espen Fjærvik, Geir Klinkenberg, Sergey Zotchev
  • Publication number: 20150353614
    Abstract: The present invention provides for a synthetic transcription factor (TF) comprising a first peptide capable of binding a target ligand, a second peptide capable of binding a target DNA, and a peptide linker linking the first and second peptides. The present invention also provide for a system for modulating the mutagenesis frequency of a host cell. The host cell has a mutator rate (R) which is inversely proportional to a phenotypic trait (P).
    Type: Application
    Filed: June 10, 2015
    Publication date: December 10, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Howard H. Chou, Jay D. Keasling, Sergey Zotchev
  • Publication number: 20130280766
    Abstract: The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.
    Type: Application
    Filed: October 31, 2011
    Publication date: October 24, 2013
    Applicant: The Regents of the Unversity of California
    Inventors: Jeffrey L. Fortman, Andrew Hagen, Leonard Katz, Jay D. Keasling, Sean Poust, Jingwei Zhang, Sergey Zotchev
  • Publication number: 20110117606
    Abstract: The present invention provides a nucleic acid molecule comprising: (a) a nucleotide sequence as shown in SEQ ID No. 1; or (b) a nucleotide sequence which is the complement of SEQ ID No. 1; or (c) a nucleotide sequence which is degenerate with SEQ ID No. 1; or (d) a nucleotide sequence having at least 85% sequence identity (preferably at least 87%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity) with SEQ ID No. 1; or (e) a part of any one of (a) to (d), wherein said nucleic acid molecule encodes or is a complementary to a nucleic acid molecule encoding one or more polypeptides, or comprises or is complementary to a nucleic acid molecule comprising one or more genetic elements, having functional activity in the synthesis of a polyketide-based or macrolactam molecule.
    Type: Application
    Filed: March 20, 2009
    Publication date: May 19, 2011
    Inventors: Hanne Jørgensen, Trond Erling Ellingsen, Kristin Fløgstad Degnes, Per Bruheim, Håvard Sletta, Espen Fjaervik, Geir Klinkenberg, Sergey Zotchev