Patents by Inventor Sergio A. Quezada

Sergio A. Quezada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11919960
    Abstract: The present disclosure provides antibody sequences found in antibodies that bind to human CD25. In particular, the present disclosure provides sequences of anti-human CD25 antibodies, which do not block the binding of CD25 to IL-2 or IL-2 signalling. Antibodies and antigen-binding portions thereof including such sequences can be used in 5 pharmaceutical compositions and methods of treatment, in particular for treating cancer.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: March 5, 2024
    Assignees: Tusk Therapeutics Ltd., Cancer Research Technology Limited
    Inventors: Anne Goubier, Beatriz Goyenechea Corzo, Josephine Salimu, Kevin Moulder, Pascal Merchiers, Sergio Quezada
  • Patent number: 11879014
    Abstract: The present disclosure relates to use of an anti-CD25 antibody, not inhibiting IL-2-CD25 interaction, with enhanced binding to activating Fc gamma Rs that lead to effective depletion of tumor-infiltrating Treg cells and improved control of established tumors. Combination with anti-programmed cell death protein-1 antibodies further improves tumor rejection.
    Type: Grant
    Filed: March 3, 2018
    Date of Patent: January 23, 2024
    Assignees: Tusk Therapeutics Ltd., Cancer Research Technology Limited
    Inventors: Anne Goubier, Josephine Salimu, Kevin Moulder, Beatriz Goyenechea Corzo, Pascal Merchiers, Sergio Quezada, Karl Peggs, Frederick Arce Vargas, Isabelle Solomon
  • Patent number: 11873341
    Abstract: The present disclosure provides antibody sequences found in antibodies that bind to human CD25, in particular an anti CD25-a-674 antibody which do not block the binding of CD25 to IL-2 or IL-2 signalling. The claimed antibody binds to the epitopes: YQCVQGYRALHRGP (150 to 163) or SVCKMTHGKTRWTQP (166 to 180) on CD25 Antibodies and antigen-binding portions thereof including such sequences can be used in pharmaceutical compositions and methods of treatment, in particular for treating cancer.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: January 16, 2024
    Assignees: Tusk Therapeutics Ltd., Cancer Research Technology Limited
    Inventors: Anne Goubier, Beatriz Goyenechea Corzo, Josephine Salimu, Kevin Moulder, Pascal Merchiers, Sergio Quezada
  • Patent number: 11851494
    Abstract: The present disclosure provides antibody sequences found in antibodies that bind to human CD25. In particular, the present disclosure provides sequences of anti-human CD25 antibodies, which do not block the binding of CD25 to IL-2 or IL-2 signalling. Antibodies and antigen-binding portions thereof including such sequences can be used in pharmaceutical compositions and methods of treatment, in particular for treating cancer.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: December 26, 2023
    Assignees: Tusk Therapeutics Ltd., Cancer Research Technology Limited
    Inventors: Anne Goubier, Beatriz Goyenechea Corzo, Josephine Salimu, Kevin Moulder, Pascal Merchiers, Sergio Quezada
  • Patent number: 11814434
    Abstract: The present disclosure provides antibody sequences found in antibodies that bind to human CD25, in particular an anti CD25-a-672 antibody which do not block the binding of CD25 to IL-2 or IL-2 signalling. The claimed antibody binds to the epitopes: PHATFKAMA YKEGTM (42-56) and YQCVQGYRALH (150-160) on CD25. Antibodies and antigen-binding portions thereof including such sequences can be used in pharmaceutical compositions and methods of treatment, in particular for treating cancer.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: November 14, 2023
    Assignees: Tusk Therapeutics Ltd., Cancer Research Technology Limited
    Inventors: Anne Goubier, Beatriz Goyenechea Corzo, Josephine Salimu, Kevin Moulder, Pascal Merchiers, Mark Brown, James Geoghegan, Bianka Prinz, Sergio Quezada
  • Patent number: 11802160
    Abstract: The present disclosure provides antibody sequences found in antibodies that bind to human CD25. In particular, the present disclosure provides sequences of anti-human CD25 antibodies, which do not block the binding of CD25 to IL-2 or IL-2 signalling. Antibodies and antigen-binding portions thereof including such sequences can be used in pharmaceutical composition and methods of treatment, in particular for treating cancer.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: October 31, 2023
    Assignees: Tusk Therapeutics Ltd., Cancer Research Technology Limited
    Inventors: Anne Goubier, Beatriz Goyenechea Corzo, Josephine Salimu, Kevin Moulder, Pascal Merchiers, Mark Brown, Sergio Quezada, James Geoghegan, Bianka Prinz
  • Patent number: 11802161
    Abstract: The present disclosure provides antibody sequences found in antibodies that bind to human CD25, in particular an anti CD25-a-634 antibody which do not block the binding of CD25 to IL-2 or IL-2 signalling. Antibodies and antigen-binding portions thereof including such sequences can be used in pharmaceutical compositions and methods of treatment, in particular for treating cancer.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: October 31, 2023
    Assignees: Tusk Therapeutics Ltd., Cancer Research Technology Limited
    Inventors: Anne Goubier, Beatriz Goyenechea Corzo, Josephine Salimu, Kevin Moulder, Pascal Merchiers, Mark Brown, James Geoghegan, Bianka Prinz, Sergio Quezada
  • Patent number: 11787866
    Abstract: The present disclosure provides antibody sequences found in antibodies that bind to human CD25. In particular, the present disclosure provides sequences of anti-human CD25 antibodies, which do not block the binding of CD25 to IL-2 or IL-2 signalling. Antibodies and antigen-binding portions thereof including such sequences can be used in pharmaceutical composition and methods of treatment, in particular for treating cancer.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: October 17, 2023
    Assignees: Tusk Therapeutics Ltd., Cancer Research Technology Limited
    Inventors: Anne Goubier, Beatriz Goyenechea Corzo, Josephine Salimu, Kevin Moulder, Pascal Merchiers, Mark Brown, Sergio Quezada, James Geoghegan, Bianka Prinz
  • Publication number: 20230265200
    Abstract: The present disclosure relates to a method of treating a solid tumour, wherein said method involves the use of an antibody to CD25. In particular, the antibody to CD25 is optimized for depletion of regulatory T cells (Treg) within tumours. The present invention also provides novel anti-CD25 antibodies and their combination with other anti-cancer drugs, such as immune checkpoint inhibitors, compounds that target cancer antigens or the inhibitory Fc receptor FcyRllb (CD32b).
    Type: Application
    Filed: March 28, 2022
    Publication date: August 24, 2023
    Applicants: Cancer Research Technology Limited, Cancer Research Technology Limited
    Inventors: Sergio Quezada, Karl Peggs, Frederick Arce Vargas
  • Patent number: 11697688
    Abstract: The present disclosure provides antibody sequences found in antibodies that bind to human CD25, in particular an anti CD25-a-674 antibody which do not block the binding of CD25 to IL-2 or IL-2 signalling. The claimed antibody binds to the epitopes: QCVQGYRA and RWTQPQLICTG on CD25 Antibodies and antigen-binding portions thereof including such sequences can be used in pharmaceutical compositions and methods of treatment, in particular for treating cancer.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: July 11, 2023
    Assignees: Tusk Therapeutics Ltd., Cancer Research Technology Limited
    Inventors: Anne Goubier, Beatriz Goyenechea Corzo, Josephine Salimu, Kevin Moulder, Pascal Merchiers, Mark Brown, James Geoghegan, Bianka Prinz, Sergio Quezada
  • Publication number: 20230158073
    Abstract: The present invention provides an engineered T cell for use in a method of treatment of a proliferative disorder, wherein the engineered T cell has modulated expression of one or more genes selected from SIT1, SAMSN1, SIRPG, CD7, CD82, FCRL3, IL1RAP, FURIN, STOM, AXL, E2F1, C5ORF30, CLDND1, COTL1, DUSP4, EPHA1, FABP5, GFI1, ITM2A, PARK7, PECAM1, PHLDA1, RAB27A, RBPJ, RGS1, RGS2, RNASEH2A, SUV39H1, and TNIP3. Further provided are activity modulators of one or more proteins encoded by genes selected from SIT1, SAMSN1, SIRPG, CD7, CD82, FCRL3, IL1RAP, FURIN, STOM, AXL, E2F1, C5ORF30, CLDND1, COTL1, DUSP4, EPHA1, FABP5, GFI1, ITM2A, PARK7, PECAM1, PHLDA1, RAB27A, RBPJ, RGS1, RGS2, RNASEH2A, SUV39H1, and TNIP3 for use in a method of enhancing immunotherapy in a subject having a proliferative disorder. Also provided are related methods of treatment employing the engineered T cell and/or inhibitor.
    Type: Application
    Filed: April 16, 2021
    Publication date: May 25, 2023
    Applicant: Cancer Research Technology Limited
    Inventors: Sergio Quezada, Karl Peggs, Charles Swanton, Ehsan Ghorani, James Reading, Felipe Galvez-Cancino, Despoina Karagianni
  • Publication number: 20220323500
    Abstract: The present invention relates to a method for treating a subject having been diagnosed has having cancer with an immunotherapy is described. The method the following steps: a) providing a sample of a pharmaceutical product comprising T cells; b) analysing the reactivity of the sample T cells to an assay antigen; c) determining that said sample T cells meet a predetermined threshold for reactivity to the assay antigen; and d) if the sample T cells meet the predetermined threshold, administering the pharmaceutical product to the subject, wherein the pharmaceutical product comprise T cells isolated from a tumour sample from the subject, and wherein the T cells are tumour infiltrating lymphocytes (TILs).
    Type: Application
    Filed: April 8, 2022
    Publication date: October 13, 2022
    Inventors: Katy Newton, Sergio Quezada
  • Publication number: 20220241333
    Abstract: The present invention provides an engineered T cell for use in a method of treatment of a proliferative disorder in a mammalian subject, wherein the T cell has been engineered (i) to overexpress BLIMP1 and/or (ii) to knock-out or decrease expression of BCL6. Further provided is a BCL6 inhibitor for use in a method of enhancing immunotherapy in a subject having a proliferative disorder. Also provided are related methods of treatment employing the engineered T cell and/or BCL6 inhibitor.
    Type: Application
    Filed: July 3, 2020
    Publication date: August 4, 2022
    Inventors: Sergio Quezada, Karl Peggs, Anna Sledzinska, Richard Jenner, Felipe Galvez Cancino, Maria Vila de Mucha
  • Publication number: 20220162315
    Abstract: Agonists to ICOS in combination with a blocking agent to a T cell inhibitory receptor (e.g., CTLA-4, PD-1, etc.) are demonstrated herein to be useful for the treatment of tumors.
    Type: Application
    Filed: September 14, 2021
    Publication date: May 26, 2022
    Inventors: James Allison, Padmanee Sharma, Sergio A. Quezada, Tihui Fu
  • Patent number: 11098121
    Abstract: The present invention relates to methods for identifying a subject with cancer who is suitable for treatment with an immune checkpoint intervention, and to methods of treatment of such subjects. The invention further relates to a method for predicting or determining the prognosis of a subject with cancer.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: August 24, 2021
    Assignee: CANCER RESEARCH TECHNOLOGY LIMITED
    Inventors: Nicholas McGranahan, Rachel Rosenthal, Charles Swanton, Karl Peggs, Sergio Quezada
  • Publication number: 20210054084
    Abstract: The present disclosure provides antibody sequences found in antibodies that bind to human CD25. In particular, the present disclosure provides sequences of anti-human CD25 antibodies, which do not block the binding of CD25 to IL-2 or IL-2 signalling. Antibodies and antigen-binding portions thereof including such sequences can be used in 5 pharmaceutical compositions and methods of treatment, in particular for treating cancer.
    Type: Application
    Filed: March 13, 2019
    Publication date: February 25, 2021
    Inventors: Anne Goubier, Beatriz Goyenechea Corzo, Josephine Salimu, Kevin Moulder, Pascal Merchiers, Sergio Quezada
  • Publication number: 20210047420
    Abstract: The present disclosure provides antibody sequences found in antibodies that bind to human CD25. In particular, the present disclosure provides sequences of anti-human CD25 antibodies, which do not block the binding of CD25 to IL-2 or IL-2 signalling. Antibodies and antigen-binding portions thereof including such sequences can be used in pharmaceutical compositions and methods of treatment, in particular for treating cancer.
    Type: Application
    Filed: March 13, 2019
    Publication date: February 18, 2021
    Inventors: Anne Goubier, Beatriz Goyenechea Corzo, Josephine Salimu, Kevin Moulder, Pascal Merchiers, Sergio Quezada
  • Publication number: 20210040221
    Abstract: The present disclosure provides antibody sequences found in antibodies that bind to human CD25, in particular an anti CD25-a-674 antibody which do not block the binding of CD25 to IL-2 or IL-2 signalling. The claimed antibody binds to the epitopes: YQCVQGYRALHRGP (150 to 163) or SVCKMTHGKTRWTQP (166 to 180) on CD25 Antibodies and antigen-binding portions N thereof including such sequences can be used in pharmaceutical compositions and methods of treatment, in particular for treating cancer.
    Type: Application
    Filed: March 13, 2019
    Publication date: February 11, 2021
    Inventors: Anne Goubier, Beatriz Goyenechea Corzo, Josephine Salimu, Kevin Moulder, Pascal Merchiers, Sergio Quezada
  • Publication number: 20210009702
    Abstract: The present disclosure provides antibody sequences found in antibodies that bind to human CD25, in particular an anti CD25-a-634 antibody which do not block the binding of CD25 to IL-2 or IL-2 signalling Antibodies and antigen-binding portions thereof including such sequences can be used in pharmaceutical compositions and methods of treatment, in particular for treating cancer.
    Type: Application
    Filed: March 13, 2019
    Publication date: January 14, 2021
    Inventors: Anne Goubier, Beatriz Goyenechea Corzo, Josephine Salimu, Kevin Moulder, Pascal Merchiers, Mark Brown, James Geoghegan, Bianka Prinz, Sergio Quezada
  • Publication number: 20210009703
    Abstract: The present disclosure provides antibody sequences found in antibodies that bind to human CD25, in particular an anti CD25-a-672 antibody which do not block the binding of CD25 to IL-2 or IL-2 signalling. The claimed antibody binds to the epitopes: PHATFKAMA YKEGTM (42-56) and YQCVQGYRALH (150-160) on CD25. Antibodies and antigen-binding portions thereof including such sequences can be used in pharmaceutical compositions and methods of treatment, in particular for treating cancer.
    Type: Application
    Filed: March 13, 2019
    Publication date: January 14, 2021
    Inventors: Anne Goubier, Beatriz Goyenechea Corzo, Josephine Salimu, Kevin Moulder, Pascal Merchiers, Mark Brown, James Geoghegan, Bianka Prinz, Sergio Quezada