Patents by Inventor Sergio Paulo Martins Loureiro

Sergio Paulo Martins Loureiro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9287485
    Abstract: Method for joining wires using low resistivity joints is provided. More specifically, methods of joining one or more wires having superconductive filaments, such as magnesium diboride filaments, are provided. The wires are joined by a low resistivity joint to form wires of a desired length for applications, such in medical imaging applications.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: March 15, 2016
    Assignee: General Electric Company
    Inventors: Judson Sloan Marte, Xianrui Huang, Evangelos Trifon Laskaris, Bruce Alan Knudsen, Thomas Robert Raber, Robert John Zabala, James William Bray, Paul Shadforth Thompson, Sergio Paulo Martins Loureiro, Curtis Alan Johnson, Sylvia Marie Decarr
  • Patent number: 8419974
    Abstract: Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: April 16, 2013
    Assignee: General Electric Company
    Inventors: Holly Ann Comanzo, Mohan Manoharan, Sergio Paulo Martins Loureiro, Anant Achyut Setlur, Alok Mani Srivastava
  • Patent number: 8211498
    Abstract: In some embodiments, the present invention is directed to methods of making structures with complex functional architectures, where such structures generally comprise at least two mesoporous regions comprising different chemical activity, and where such methods afford spatial control over the placement of such regions of differing chemical activity. In some embodiments, the present invention is also directed to the structures formed by such methods, where such structures are themselves novel.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: July 3, 2012
    Assignee: General Electric Company
    Inventors: Anthony Yu-Chung Ku, Seth Thomas Taylor, Mohan Manoharan, Sergio Paulo Martins Loureiro, James Anthony Ruud
  • Publication number: 20120165200
    Abstract: Method for joining wires using low resistivity joints is provided. More specifically, methods of joining one or more wires having superconductive filaments, such as magnesium diboride filaments, are provided. The wires are joined by a low resistivity joint to form wires of a desired length for applications, such in medical imaging applications.
    Type: Application
    Filed: March 9, 2012
    Publication date: June 28, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Judson Sloan Marte, Xianrui Huang, Evangelos Trifon Laskaris, Bruce Alan Knudsen, Thomas Robert Raber, Robert John Zabala, James William Bray, Paul Shadforth Thompson, Sergio Paulo Martins Loureiro, Curtis Alan Johnson, Sylvia Marie Decarr
  • Patent number: 7978402
    Abstract: Articles transparent to infrared radiation and resistant to impact and wear are provided. The article comprises a substrate and a composite coating disposed over the substrate and extending from an interface with the substrate to an external surface. The composite coating comprises a first phase and a second phase. The second phase has a higher resistance to erosive wear than the first phase. The coating comprises a compositional gradient proceeding from a first composition at the interface of the coating with the substrate to a second composition at the external surface, the first composition comprising a higher concentration of the first phase than that of the second composition.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: July 12, 2011
    Assignee: General Electric Company
    Inventors: Sean Michael Sweeney, Timothy James Yosenick, Dalong Zhong, Milivoj Konstantin Brun, Sergio Paulo Martins Loureiro, Venkat Subramaniam Venkataramani, Mohan Manoharan
  • Patent number: 7959827
    Abstract: A long-lived phosphor composition is provided, along with methods for making and using the composition. More specifically, in one embodiment, the phosphor comprises a material having a formula of Ax-y-zAl2-m-n-o-pO4:Euy, REz, Bm, Znn, Coo, Scp. In this formula, A may be Ba, Sr, Ca, or a combination of these metals, x is between about 0.75 and 1.3, y is between about 0.0005 and 0.1, z is between about 0.0005 and 0.1, m is between about 0.0005 and 0.30, n is between about 0.0005 and 0.10, o is between about 0 and 0.01 and p is between about 0 and 0.05. RE is Dy, Nd, or a combination thereof. In another embodiment, methods are provided for making persistent phosphors comprising the formulations above. Other embodiments provide applications for such a phosphor, comprising uses in toys, emergency equipment, clothing, and instrument panels, among others.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: June 14, 2011
    Assignee: General Electric Company
    Inventors: Holly Ann Comanzo, Alok Mani Srivastava, William W. Beers, Sergio Paulo Martins Loureiro, Anant Achyut Setlur, Stanley John Stoklosa, Claire S. Henderson
  • Publication number: 20110024685
    Abstract: Crystalline scintillator materials comprising nano-scale particles of metal oxides, metal oxyhalides and metal oxysulfides are provided. The nano-scale particles are less than 100 nm in size. Methods are provided for preparing the particles. In one method, used to form oxyhalides and oxysulfides, metal salts are dissolved in water, and then precipitated out as fine particles using an aqueous base. After the particles are separated from the solution, they are annealed under a flow of a water saturated hydrogen anion gas, such as HCl or H2S, to form the crystalline scintillator particles The other methods take advantage of the characteristics of microemulsion solutions to control droplet size, and, thus, the particle size of the final nano-particles. For example, in one method, a first micro-emulsion containing metal salts if formed. The first micro-emulsion is mixed with an aqueous base in a second micro-emulsion to form the final nano-scale particles.
    Type: Application
    Filed: January 21, 2010
    Publication date: February 3, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Brent Allen Clothier, Sergio Paulo Martins Loureiro, Alok Srivastava, Stanley John Stoklosa, Steven Jude Duclos, Venkat Subramaniam Venkataramani
  • Patent number: 7879284
    Abstract: A method of making a cubic halide scintillator material includes pressing a powder mixture of cubic halide and at least one activator under conditions of pressure, temperature, residence time and particle size effective to provide a polycrystalline sintered cubic halide scintillator having a pulse height resolution of from about 7% to about 20%. The conditions include a temperature ranging from about ambient temperature up to about 90% of the melting point of the cubic halide, a pressure of from about 30,000 psi to about 200,000 psi, a pressing residence time of from about 5 minutes to about 120 minutes and an average cubic halide particle size of from about 60 micrometers to about 275 micrometers.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: February 1, 2011
    Assignee: Momentive Performance Materials Inc.
    Inventors: Sergio Paulo Martins Loureiro, Venkat Subramaniam Venkataramani, Lucas Clarke, Kevin P. McEvoy, Carl Joshua Vess, Thomas McNulty, Steven Jude Duclos, Adrian Ivan, Patricia A. Hubbard
  • Patent number: 7833483
    Abstract: A structure includes a substantially non-conductive frame having an exterior surface. The structure defines a plurality of passages that open to the exterior surface. Mesoporous material is disposed in the plurality of passages and is supported therein by the frame. In a method for making a mesoporous nanocrystalline titania hybrid material, a templating agent, an acid, and a titania precursor is mixed into a template liquid. A frame that defines a plurality of passages is placed into the template liquid. A solvent is evaporated from the template liquid, thereby forming a titania gel encapsulating the templating agent. The gel is heated to remove substantially the templating agent from the non-conductive frame and the titania, thereby leaving a mesoporous titania material.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: November 16, 2010
    Assignee: General Electric Company
    Inventors: Anthony Yu-Chung Ku, Sergio Paulo Martins Loureiro, James Anthony Ruud
  • Patent number: 7820124
    Abstract: A material comprising a plurality of nanoparticles. Each of the plurality of nanoparticles includes at least one of a metal phosphate, a metal silicate, a metal oxide, a metal borate, a metal aluminate, and combinations thereof. The plurality of nanoparticles is substantially monodisperse. Also disclosed is a method of making a plurality of substantially monodisperse nanoparticles. The method includes providing a slurry of at least one metal precursor, maintaining the pH of the slurry at a predetermined value, mechanically milling the slurry, drying the slurry to form a powder; and calcining the powder at a predetermined temperature to form the plurality of nanoparticles.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: October 26, 2010
    Assignee: General Electric Company
    Inventors: Kalaga Murali Krishna, Sergio Paulo Martins Loureiro, Mohan Manoharan, Geetha Karavoor, Shweta Saraswat
  • Publication number: 20100254875
    Abstract: A material comprising a plurality of nanoparticles. Each of the plurality of nanoparticles includes at least one of a metal phosphate, a metal silicate, a metal oxide, a metal borate, a metal aluminate, and combinations thereof. The plurality of nanoparticles is substantially monodisperse. Also disclosed is a method of making a plurality of substantially monodisperse nanoparticles. The method includes providing a slurry of at least one metal precursor, maintaining the pH of the slurry at a predetermined value, mechanically milling the slurry, drying the slurry to form a powder; and calcining the powder at a predetermined temperature to form the plurality of nanoparticles.
    Type: Application
    Filed: October 5, 2006
    Publication date: October 7, 2010
    Inventors: Kalaga Murali Krishna, Sergio Paulo Martins Loureiro, Mohan Manoharan, Geetha Karavoor, Shweta Saraswat
  • Patent number: 7800073
    Abstract: Moldable neutron sensitive compositions containing an inorganic scintillating component, and neutron capture component, and a moldable resin component, are described. They are prepared with optimized compositions for maximized thermal neutron sensitivity. Methods for preparing such compositions, and articles and radiation detectors made from them are described as well.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: September 21, 2010
    Assignee: General Electric Company
    Inventors: Brent Allen Clothier, Venkat Subramaniam Venkataramani, Sergio Paulo Martins Loureiro, Adrian Ivan
  • Publication number: 20100230601
    Abstract: A polycrystalline scintillator composition is provided. The polycrystalline scintillator composition is capable of being sintered to form a body having a pulse height resolution that is less than about 20 percent at 662 kilo electron volts. Also, an article formed form the polycrystalline scintillator composition is provided, as well as a radiation detector including the article.
    Type: Application
    Filed: January 30, 2007
    Publication date: September 16, 2010
    Applicant: General Electric Company
    Inventors: Sergio Paulo Martins Loureiro, Alok Mani Srivastava, Kevin Paul McEvoy, Venkat Subramaniam Venkataramani, Steven Jude Duclos, James Scott Vartuli, Carl Joshua Vess
  • Publication number: 20100148658
    Abstract: Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.
    Type: Application
    Filed: December 11, 2008
    Publication date: June 17, 2010
    Applicant: General Electric Company
    Inventors: Holly Ann Comanzo, Mohan Manoharan, Sergio Paulo Martins Loureiro, Anant Achyut Setlur, Alok Mani Srivastava
  • Patent number: 7708968
    Abstract: Crystalline scintillator materials comprising nano-scale particles of metal oxides, metal oxyhalides and metal oxysulfides are provided. The nano-scale particles are less than 100 nm in size. Methods are provided for preparing the particles. In one method, used to form oxyhalides and oxysulfides, metal salts are dissolved in water, and then precipitated out as fine particles using an aqueous base. After the particles are separated from the solution, they are annealed under a flow of a water saturated hydrogen anion gas, such as HCl or H2S, to form the crystalline scintillator particles. The other methods take advantage of the characteristics of microemulsion solutions to control droplet size, and, thus, the particle size of the final nano-particles. For example, in one method, a first micro-emulsion containing metal salts if formed. The first micro-emulsion is mixed with an aqueous base in a second micro-emulsion to form the final nano-scale particles.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: May 4, 2010
    Assignee: General Electric Company
    Inventors: Brent Allen Clothier, Sergio Paulo Martins Loureiro, Alok Srivastava, Stanley John Stoklosa, Steven Jude Duclos, Venkat Subramaniam Venkataramani
  • Publication number: 20100096066
    Abstract: A membrane structure is provided. A membrane structure has a top surface and a bottom surface. The membrane structure includes a plurality of sintered layers including an inner layer disposed between two outer layers. The membrane structure further includes a nonmonotonic gradient in pore size extending between the top surface and the bottom surface. A method of making a membrane structure is provided. The method includes the steps of providing at least one inner layer; providing a plurality of outer layers; and laminating the inner layer and the outer layers to obtain a membrane structure.
    Type: Application
    Filed: December 21, 2009
    Publication date: April 22, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Vidya Ramaswamy, Milivoj Konstantin Brun, Sergio Paulo Martins Loureiro, Anthony Yu-Chung Ku, Mohan Manoharan
  • Patent number: 7700003
    Abstract: A method is provided that includes heating a powder to a temperature that is below the melting point of the scintillator composition but is sufficiently high to form a coherent mass. The powder includes a scintillator composition. The coherent mass is polycrystalline and has a pulse height resolution that is less than 20 percent at 662 kilo electron volts; a light yield of more than 5000 photons per milli electron volt; or both a pulse height resolution that is less than 20 percent at 662 kilo electron volts and a light yield of more than 5000 photons per milli electron. A sintered body is provided also.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: April 20, 2010
    Assignee: General Electric Company
    Inventors: Sergio Paulo Martins Loureiro, Alok Mani Srivastava, Kevin Paul McEvoy, Venkat Subramaniam Venkataramani, Steven Jude Duclos, James Scott Vartuli, Carl Joshua Vess
  • Publication number: 20100027105
    Abstract: Articles transparent to infrared radiation and resistant to impact and wear are provided. In one embodiment the article comprises a substrate and a composite coating disposed over the substrate and extending from an interface with the substrate to an external surface. The coating and the substrate are capable of transmitting infrared radiation. The composite coating comprises a first phase and a second phase, where the second phase has a higher resistance to erosive wear than the first phase. The coating comprises a compositional gradient proceeding from a first composition at the interface of the coating with the substrate to a second composition at the external surface, the first composition comprising a higher concentration of the first phase than that of the second composition.
    Type: Application
    Filed: June 28, 2007
    Publication date: February 4, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sean Michael Sweeney, Timothy James Yosenick, Dalong Zhong, Milivoj Konstantin Brun, Sergio Paulo Martins Loureiro, Venkat Subramaniam Venkataramani, Mohan Manoharan
  • Patent number: 7625502
    Abstract: Crystalline scintillator materials comprising nano-scale particles of metal halides are provided. The nano-scale particles are less than 100 nm in size. Methods are provided for preparing the particles. In these methods, ionic liquids are used in place of water to allow precipitation of the final product. In one method, the metal precursors and halide salts are dissolved in separate ionic liquids to form solutions, which are then combined to form the nano-crystalline end product. In the other methods, micro-emulsions are formed using ionic liquids to control particle size.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: December 1, 2009
    Assignee: General Electric Company
    Inventors: Brent Allen Clothier, Sergio Paulo Martins Loureiro, Alok Srivastava, Venkat Subramaniam Venkataramani
  • Publication number: 20090280246
    Abstract: In some embodiments, the present invention is directed to methods of making structures with complex functional architectures, where such structures generally comprise at least two mesoporous regions comprising different chemical activity, and where such methods afford spatial control over the placement of such regions of differing chemical activity. In some embodiments, the present invention is also directed to the structures formed by such methods, where such structures are themselves novel.
    Type: Application
    Filed: June 12, 2009
    Publication date: November 12, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Anthony Yu-Chung Ku, Seth Thomas Taylor, Mohan Manoharan, Sergio Paulo Martins Loureiro, James Anthony Ruud