Patents by Inventor Serquei Matitsine

Serquei Matitsine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230188399
    Abstract: This application proposes multi-beam antenna systems using spherical lens are proposed, with high isolation between antenna ports and compatible to 2×2, 4×4, 8×8 MIMO transceivers. Several compact multi-band multi-beam solutions (with wideband operation, 40%+, in each band) are achieved by creating dual-band radiators movable on the track around spherical lens and by placing of lower band radiators between spherical lenses. By using of secondary lens for high band radiators, coupling between low band and high band radiators is reduced. Beam tilt range and side lobe suppression are improved by special selection of phase shift and rotational angle of radiators. Resultantly, a wide beam tilt range (0-40 degree) is realized in proposed multi-beam antenna systems. Each beam can be individually tilted. Based on proposed single- and multi-lens antenna solutions, cell coverage improvements and stadium tribune coverage optimization are also achieved, together with interference reduction.
    Type: Application
    Filed: February 8, 2023
    Publication date: June 15, 2023
    Inventors: Serquei Matitsine, Igor Timofeev, Leonid Matytsine, Anthony DeMarco
  • Patent number: 11431099
    Abstract: A radio frequency antenna array uses lenses and RF elements, to provide ground-based coverage for cellular communication. The antenna array can include two spherical lenses, where each spherical lens has at least two associated RF elements. Each of the RF elements associated with a given lens produces an output beam with an output area. Each lens is positioned with the other lenses in a staggered arrangement. The antenna includes a control mechanism configured to enable a user to move the RF elements along their respective tracks, and automatically phase compensate the output beams produced by the RF elements based on the relative distance between the RF elements.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: August 30, 2022
    Assignee: Matsing, Inc.
    Inventors: Serquei Matitsine, Leonid Matytsine, Igor Timofeev, John Stewart Wilson
  • Publication number: 20210266213
    Abstract: This application proposes multi-beam antenna systems using spherical lens are proposed, with high isolation between antenna ports and compatible to 2×2, 4×4, 8×8 MIMO transceivers. Several compact multi-band multi-beam solutions (with wideband operation, 40%+, in each band) are achieved by creating dual-band radiators movable on the track around spherical lens and by placing of lower band radiators between spherical lenses. By using of secondary lens for high band radiators, coupling between low band and high band radiators is reduced. Beam tilt range and side lobe suppression are improved by special selection of phase shift and rotational angle of radiators. Resultantly, a wide beam tilt range (0-40 degree) is realized in proposed multi-beam antenna systems. Each beam can be individually tilted. Based on proposed single- and multi-lens antenna solutions, cell coverage improvements and stadium tribune coverage optimization are also achieved, together with interference reduction.
    Type: Application
    Filed: May 6, 2021
    Publication date: August 26, 2021
    Inventors: Serquei Matitsine, Igor Timofeev, Leonid Matytsine, Anthony DeMarco
  • Publication number: 20210167513
    Abstract: A radio frequency antenna array uses lenses and RF elements, to provide ground-based coverage for cellular communication. The antenna array can include two spherical lenses, where each spherical lens has at least two associated RF elements. Each of the RF elements associated with a given lens produces an output beam with an output area. Each lens is positioned with the other lenses in a staggered arrangement. The antenna includes a control mechanism configured to enable a user to move the RF elements along their respective tracks, and automatically phase compensate the output beams produced by the RF elements based on the relative distance between the RF elements.
    Type: Application
    Filed: December 8, 2020
    Publication date: June 3, 2021
    Inventors: Serquei Matitsine, Leonid Matytsine, Igor Timofeev, John Scott Wilson
  • Patent number: 11025472
    Abstract: This application proposes multi-beam antenna systems using spherical lens are proposed, with high isolation between antenna ports and compatible to 2×2, 4×4, 8×8 MIMO transceivers. Several compact multi-band multi-beam solutions (with wideband operation, 40%+, in each band) are achieved by creating dual-band radiators movable on the track around spherical lens and by placing of lower band radiators between spherical lenses. By using of secondary lens for high band radiators, coupling between low band and high band radiators is reduced. Beam tilt range and side lobe suppression are improved by special selection of phase shift and rotational angle of radiators. Resultantly, a wide beam tilt range (0-40 degree) is realized in proposed multi-beam antenna systems. Each beam can be individually tilted. Based on proposed single- and multi-lens antenna solutions, cell coverage improvements and stadium tribune coverage optimization are also achieved, together with interference reduction.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: June 1, 2021
    Assignee: Matsing, Inc.
    Inventors: Serquei Matitsine, Igor Timofeev, Leonid Matytsine, Anthony DeMarco
  • Publication number: 20200195481
    Abstract: This application proposes multi-beam antenna systems using spherical lens are proposed, with high isolation between antenna ports and compatible to 2×2, 4×4, 8×8 MIMO transceivers. Several compact multi-band multi-beam solutions (with wideband operation, 40%+, in each band) are achieved by creating dual-band radiators movable on the track around spherical lens and by placing of lower band radiators between spherical lenses. By using of secondary lens for high band radiators, coupling between low band and high band radiators is reduced. Beam tilt range and side lobe suppression are improved by special selection of phase shift and rotational angle of radiators. Resultantly, a wide beam tilt range (0-40 degree) is realized in proposed multi-beam antenna systems. Each beam can be individually tilted. Based on proposed single- and multi-lens antenna solutions, cell coverage improvements and stadium tribune coverage optimization are also achieved, together with interference reduction.
    Type: Application
    Filed: February 20, 2020
    Publication date: June 18, 2020
    Inventors: Serquei Matitsine, Igor Timofeev, Leonid Matytsine, Anthony DeMarco