Patents by Inventor Seth Coe-Sullivan

Seth Coe-Sullivan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150048403
    Abstract: Methods for making multiple hermetically sealed optical components are disclosed. Methods for making an individual hermetically sealed optical component are disclosed. An individual hermetically sealed optical component and products including same are also disclosed.
    Type: Application
    Filed: August 16, 2014
    Publication date: February 19, 2015
    Inventors: BUDHADIPTA DAN, SETH COE-SULLIVAN
  • Publication number: 20150021548
    Abstract: A semiconductor nanocrystal characterized by having a solid state photoluminescence external quantum efficiency at a temperature of 90° C. or above that is at least 95% of the solid state photoluminescence external quantum efficiency of the semiconductor nanocrystal at 25° C. is disclosed. A semiconductor nanocrystal having a multiple LO phonon assisted charge thermal escape activation energy of at least 0.5 eV is also disclosed. A semiconductor nanocrystal capable of emitting light with a maximum peak emission at a wavelength in a range from 590 nm to 650 nm characterized by an absorption spectrum, wherein the absorption ratio of OD at 325 nm to OD at 450 nm is greater than 5.5. A semiconductor nanocrystal capable of emitting light with a maximum peak emission at a wavelength in a range from 545 nm to 590 nm characterized by an absorption spectrum, wherein the absorption ratio of OD at 325 nm to OD at 450 nm is greater than 7.
    Type: Application
    Filed: August 4, 2014
    Publication date: January 22, 2015
    Inventors: WENHAO LIU, CRAIG BREEN, SETH COE-SULLIVAN
  • Publication number: 20150014625
    Abstract: A component including a substrate, at least one layer including a color conversion material comprising quantum dots disposed over the substrate, and a layer comprising a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material comprising quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein.
    Type: Application
    Filed: June 23, 2014
    Publication date: January 15, 2015
    Inventors: Seth Coe-Sullivan, Peter T. Kazlas
  • Patent number: 8906804
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: December 9, 2014
    Assignee: QD Vision, Inc.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, LeeAnn Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, Jr.
  • Patent number: 8876272
    Abstract: An ink composition comprising a nanomaterial and a liquid vehicle, wherein the liquid vehicle comprises a composition including one or more functional groups that are capable of being cross-linked is disclosed. An ink composition comprising a nanomaterial, a liquid vehicle, and scatterers is also disclosed. An ink composition comprising a nanomaterial and a liquid vehicle, wherein the liquid vehicle comprises a perfluorocompound is further disclosed. A method for inkjet printing an ink including nanomaterial and a liquid vehicle with a surface tension that is not greater than about 25 dyne/cm is disclosed. In certain preferred embodiments, the nanomaterial comprises semiconductor nanocrystals. Devices prepared from inks and methods of the invention are also described.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: November 4, 2014
    Assignee: QD Vision, Inc.
    Inventors: John R. Linton, Peter T. Kazlas, Craig Breen, Seth Coe-Sullivan
  • Patent number: 8849087
    Abstract: The present inventions relate to optical components which include quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles include a ligand attached to a surface thereof, the ligand being represented by the formula: X-Sp-Z, wherein: X represents a primary amine group, a secondary amine group, a urea, a thiourea, an imidizole group, an amide group, an other nitrogen containing group, a carboxylic acid group, a phosphonic or arsonic acid group, a phosphinic or arsinic acid group, a phosphate or arsenate group, a phosphine or arsine oxide group; Sp represents a spacer group, such as a group capable of allowing a transfer of charge or an insulating group; and Z represents: (i) a reactive group capable of communicating specific chemical properties to the nanocrystal as well as provide specific chemical reactivity to the surface of the nanocrystal, and/or (ii) a group that is cyclic, halogenated, or polar a-protic.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: September 30, 2014
    Assignee: QD Vision, Inc.
    Inventors: Craig Breen, John R. Linton, Jonathan S. Steckel, Marshall Cox, Seth Coe-Sullivan, Mark Comerford
  • Patent number: 8835941
    Abstract: A display comprises a substrate and a light-emitting device disposed on the substrate, wherein the substrate comprises a semiconducting material and a circuit for controlling the light-emitted from the light-emitting device. A light-emitting device includes a light-emitting material comprising semiconductor nanocrystals and an electrode in electrical connection with the light-emitting material on a side thereof remote from the substrate.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: September 16, 2014
    Assignee: QD Vision, Inc.
    Inventors: Seth Coe-Sullivan, Gregory V. Moeller, Vladimir Bulovic, Ioannis Kymissis
  • Patent number: 8759850
    Abstract: A component including a substrate, at least one layer including a color conversion material including quantum dots disposed over the substrate, and a layer including a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material including quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: June 24, 2014
    Assignee: QD Vision, Inc.
    Inventors: Seth Coe-Sullivan, Peter T. Kazlas
  • Patent number: 8718437
    Abstract: A composition useful for altering the wavelength of visible or invisible light is disclosed. The composition comprising a solid host material and quantum confined semiconductor nanoparticles, wherein the nanoparticles are included in the composition in amount in the range from about 0.001 to about 15 weight percent based on the weight of the host material. The composition can further include scatterers. An optical component including a waveguide component and quantum confined semiconductor nanoparticles is also disclosed. A device including an optical component is disclosed. A system including an optical component including a waveguide component and quantum confined semiconductor nanoparticles and a light source optically coupled to the waveguide component is also disclosed. A decal, kit, ink composition, and method are also disclosed. A TFEL including quantum confined semiconductor nanoparticles on a surface thereof is also disclosed.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: May 6, 2014
    Assignee: QD Vision, Inc.
    Inventors: Seth Coe-Sullivan, John R. Linton, Craig Breen, Jonathan S. Steckel, Mark Comerford, Rohit Modi
  • Publication number: 20140091275
    Abstract: A component including a substrate, at least one layer including a color conversion material including quantum dots disposed over the substrate, and a layer including a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material including quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein.
    Type: Application
    Filed: March 25, 2013
    Publication date: April 3, 2014
    Inventors: Seth Coe-Sullivan, Peter T. Kazlas
  • Patent number: 8664640
    Abstract: A memory device can include an active layer that has a selectable lateral conductivity. The layer can include a plurality of nanoparticles.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: March 4, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Moungi G. Bawendi, Vladimir Bulović, Seth A. Coe-Sullivan
  • Patent number: 8642977
    Abstract: An article comprising an array of semiconductor nanocrystals arranged in a predetermined pattern, wherein the semiconductor nanocrystals are capable of generating light of one or more predetermined wavelengths in response to ambient light. In one embodiment the semiconductor nanocrystals emit light of different predetermined wavelengths.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: February 4, 2014
    Assignee: QD Vision, Inc.
    Inventors: Mark Comerford, Gregory V. Moeller, Vladimir Bulovic, Seth Coe-Sullivan
  • Publication number: 20140004686
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Application
    Filed: June 24, 2013
    Publication date: January 2, 2014
    Applicant: QD VISION, INC.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, LeeAnn Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, JR.
  • Patent number: 8618561
    Abstract: A method comprising depositing an ink comprising a nanomaterial and a liquid vehicle from a micro-dispenser onto a layer of a device is disclosed. A method comprising depositing an ink comprising a nanomaterial and a liquid vehicle from a micro-dispenser onto a material capable of transporting charge in a predetermined arrangement is also disclosed. Methods for fabricating devices including nanomaterials are also disclosed. In certain preferred embodiments, the nanomaterial comprises semiconductor nanocrystals. In certain preferred embodiments, a micro-dispenser comprises an inkjet printhead.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: December 31, 2013
    Assignee: QD Vision, Inc.
    Inventor: Seth Coe-Sullivan
  • Patent number: 8610232
    Abstract: An hyperspectral imaging device comprising semiconductor nanocrystals is provided.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: December 17, 2013
    Assignee: QD Vision, Inc.
    Inventors: Seth Coe-Sullivan, Gregory V. Moeller
  • Patent number: 8541810
    Abstract: A semiconductor nanocrystal includes a core including a first semiconductor material and an overcoating including a second semiconductor material. A monodisperse population of the nanocrystals emits blue light over a narrow range of wavelengths with a high quantum efficiency.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: September 24, 2013
    Assignee: Massachusettts Institute of Technology
    Inventors: Jonathan S. Steckel, John P. Zimmer, Seth Coe-Sullivan, Nathan E. Stott, Vladimir Bulović, Moungi G. Bawendi
  • Patent number: 8535758
    Abstract: A composition includes a layer of nanoparticles and a layer of a second material.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: September 17, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Vladimir Bulovic, Seth Coe-Sullivan, Wing-Keung Woo, Moungi G. Bawendi
  • Patent number: 8470617
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: June 25, 2013
    Assignee: QD Vision, Inc.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, LeeAnn Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, Jr., Peter T. Kazlas
  • Patent number: 8405063
    Abstract: A component including a substrate, at least one layer including a color conversion material including quantum dots disposed over the substrate, and a layer including a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material including quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: March 26, 2013
    Assignee: QD Vision, Inc.
    Inventors: Peter T. Kazlas, Seth Coe-Sullivan
  • Publication number: 20120292595
    Abstract: A light emitting device includes a semiconductor nanocrystal and a charge transporting layer that includes an inorganic material. The charge transporting layer can be a hole or electron transporting layer. The inorganic material can be an inorganic semiconductor.
    Type: Application
    Filed: June 1, 2012
    Publication date: November 22, 2012
    Inventors: Moungi G. Bawendi, Vladimir Bulovic, Seth Coe-Sullivan, Jean-Michel Caruge, Jonathan Steckel, Jonathan E. Halpert, Alexi Arango