Patents by Inventor Seth D. Cohen

Seth D. Cohen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240129142
    Abstract: Technologies are provided for clockless physically unclonable functions (PUFs) in reconfigurable devices. Embodiments of the disclosed technologies include processing circuitry configured to perform numerous operations. The operations can include receiving a challenge continuous pulse signal, and generating a response continuous pulse signal by iteratively extending the challenge continuous pulse signal in time-domain. In some configurations, the iteratively extending includes generating a next continuous pulse signal by operating on a prior continuous pulse signal according to a stretching function, and generating a second next continuous pulse width signal by operating on the next continuous pulse signal according to a folding function.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 18, 2024
    Inventor: Seth D. Cohen
  • Patent number: 11811954
    Abstract: Technologies are provided for clockless physically unclonable functions (PUFs) in reconfigurable devices. Embodiments of the disclosed technologies include processing circuitry configured to perform numerous operations. The operations can include receiving a challenge continuous pulse signal, and generating a response continuous pulse signal by iteratively extending the challenge continuous pulse signal in time-domain. In some configurations, the iteratively extending includes generating a next continuous pulse signal by operating on a prior continuous pulse signal according to a stretching function, and generating a second next continuous pulse width signal by operating on the next continuous pulse signal according to a folding function.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: November 7, 2023
    Assignee: Kratos SRE, Inc.
    Inventor: Seth D. Cohen
  • Patent number: 11733364
    Abstract: Backend components for noise radar and techniques for operation of those components are provided. Some embodiments include noise radar apparatuses. A noise radar apparatus may include a first unit that generates a random signal or a broadband noise signal using asynchronous logic gates constituting the first unit. The noise radar apparatus also may include a second unit that generates a reference sequence using the generated random signal or the generated broadband noise signal. The second unit comprises at least one tapped delay line formed by second asynchronous logic gates having sampling functionality and storage functionality. The noise radar apparatus may further include a third unit that receives a return signal correlates the return signal and the reference sequence in nearly real-time using third asynchronous logic gates constituting the third unit.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: August 22, 2023
    Assignees: Kratos SRE, Inc., The University of Alabama in Huntsville
    Inventors: Seth D. Cohen, Aubrey Beal
  • Patent number: 11726433
    Abstract: Technologies are provided for time-to-digital conversion without reliance on a clocking signal. The technologies include a clockless TDC apparatus that can map continuous pulse-widths to binary bits represented via an iterative chaotic map (e.g., tent map, Bernoulli shift map, or similar). The clockless TDC apparatus can convert separated pulses to a single asynchronous digital pulse that turns on when a sensor detects a first pulse and turns off when the sensor detects a second pulse. The asynchronous digital pulse can be iteratively stretched and folded in time according to the chaotic map. The clockless TDC can generate a binary sequence that represents symbolic dynamics of the chaotic map. The process can be implemented by using an iterative time delay component until a precision of the binary output is either satisfied or overwhelmed by noise or other structural fluctuations of the TDC apparatus.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: August 15, 2023
    Assignee: Kratos SRE, Inc.
    Inventor: Seth D. Cohen
  • Publication number: 20230004124
    Abstract: Technologies are provided for time-to-digital conversion without reliance on a clocking signal. Some embodiments of the technologies include a clockless TDC apparatus that can map continuous pulse-widths to binary bits represented via an iterative chaotic map (e.g., tent map, Bernoulli shift map, or similar). The clockless TDC apparatus can convert separated pulses to a single asynchronous digital pulse that turns on when a sensor detects a first pulse and turns off when the sensor detects a second pulse. The asynchronous digital pulse can be iteratively stretched and folded in time according to the chaotic map. The clockless TDC can generate a binary sequence that represents symbolic dynamics of the chaotic map. The process can be implemented by using an iterative time delay component until a precision of the binary output is either satisfied or overwhelmed by noise or other structural fluctuations of the TDC apparatus.
    Type: Application
    Filed: July 6, 2022
    Publication date: January 5, 2023
    Inventor: Seth D. Cohen
  • Publication number: 20220416769
    Abstract: Technologies are provided for generation of programmable pulse signals using inverse chaotic maps, without reliance on a clocking signal. Some embodiments of the technologies include an apparatus that can receive a sequence of bits having a defined number of bits, where the sequence of bits represent a desired continuous pulse signal having a programmable width in time-domain. The apparatus can also can receive a precursor continuous pulse signal having an arbitrary width in time-domain that fits within the dynamic range of the apparatus. The apparatus can generate the desired continuous pulse signal by transforming the precursor continuous pulse signal using the sequence of bits and an inverse chaotic map.
    Type: Application
    Filed: May 11, 2022
    Publication date: December 29, 2022
    Inventor: Seth D. Cohen
  • Publication number: 20220353095
    Abstract: Technologies are provided for clockless physically unclonable functions (PUFs) in reconfigurable devices. Embodiments of the disclosed technologies include processing circuitry configured to perform numerous operations. The operations can include receiving a challenge continuous pulse signal, and generating a response continuous pulse signal by iteratively extending the challenge continuous pulse signal in time-domain. In some configurations, the iteratively extending includes generating a next continuous pulse signal by operating on a prior continuous pulse signal according to a stretching function, and generating a second next continuous pulse width signal by operating on the next continuous pulse signal according to a folding function.
    Type: Application
    Filed: January 10, 2022
    Publication date: November 3, 2022
    Inventor: Seth D. Cohen
  • Patent number: 11415947
    Abstract: Technologies are provided for time-to-digital conversion without reliance on a clocking signal. The technologies include a clockless TDC apparatus that can map continuous pulse-widths to binary bits represented via an iterative chaotic map (e.g., tent map, Bernoulli shift map, or similar). The clockless TDC apparatus can convert separated pulses to a single asynchronous digital pulse that turns on when a sensor detects a first pulse and turns off when the sensor detects a second pulse. The asynchronous digital pulse can be iteratively stretched and folded in time according to the chaotic map. The clockless TDC can generate a binary sequence that represents symbolic dynamics of the chaotic map. The process can be implemented by using an iterative time delay component until a precision of the binary output is either satisfied or overwhelmed by noise or other structural fluctuations of the TDC apparatus.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: August 16, 2022
    Assignee: Kratos SRE, Inc.
    Inventor: Seth D. Cohen
  • Patent number: 11381224
    Abstract: Technologies are provided for generation of programmable pulse signals using inverse chaotic maps, without reliance on a clocking signal. Some embodiments of the technologies include an apparatus that can receive a sequence of bits having a defined number of bits, where the sequence of bits represent a desired continuous pulse signal having a programmable width in time-domain. The apparatus can also can receive a precursor continuous pulse signal having an arbitrary width in time-domain that fits within the dynamic range of the apparatus. The apparatus can generate the desired continuous pulse signal by transforming the precursor continuous pulse signal using the sequence of bits and an inverse chaotic map.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: July 5, 2022
    Assignee: SOUTHERN RESEARCH INSTITUTE
    Inventor: Seth D. Cohen
  • Patent number: 11265178
    Abstract: Technologies are provided for clockless physically unclonable functions (PUFs) in reconfigurable devices. Embodiments of the disclosed technologies include processing circuitry configured to perform numerous operations. The operations can include receiving a challenge continuous pulse signal, and generating a response continuous pulse signal by iteratively extending the challenge continuous pulse signal in time-domain. In some configurations, the iteratively extending includes generating a next continuous pulse signal by operating on a prior continuous pulse signal according to a stretching function, and generating a second next continuous pulse width signal by operating on the next continuous pulse signal according to a folding function.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: March 1, 2022
    Assignee: SOUTHERN RESEARCH INSTITUTE
    Inventor: Seth D. Cohen
  • Publication number: 20210364617
    Abstract: Backend components for noise radar and techniques for operation of those components are provided. Some embodiments include noise radar apparatuses. A noise radar apparatus may include a first unit that generates a random signal or a broadband noise signal using asynchronous logic gates constituting the first unit. The noise radar apparatus also may include a second unit that generates a reference sequence using the generated random signal or the generated broadband noise signal. The second unit comprises at least one tapped delay line formed by second asynchronous logic gates having sampling functionality and storage functionality. The noise radar apparatus may further include a third unit that receives a return signal correlates the return signal and the reference sequence in nearly real-time using third asynchronous logic gates constituting the third unit.
    Type: Application
    Filed: May 21, 2021
    Publication date: November 25, 2021
    Inventors: Seth D. Cohen, Aubrey Beal
  • Publication number: 20210247722
    Abstract: Technologies are provided for time-to-digital conversion without reliance on a clocking signal. Some embodiments of the technologies include a clockless TDC apparatus that can map continuous pulse-widths to binary bits represented via an iterative chaotic map (e.g., tent map, Bernoulli shift map, or similar). The clockless TDC apparatus can convert separated pulses to a single asynchronous digital pulse that turns on when a sensor detects a first pulse and turns off when the sensor detects a second pulse. The asynchronous digital pulse can be iteratively stretched and folded in time according to the chaotic map. The clockless TDC can generate a binary sequence that represents symbolic dynamics of the chaotic map. The process can be implemented by using an iterative time delay component until a precision of the binary output is either satisfied or overwhelmed by noise or other structural fluctuations of the TDC apparatus.
    Type: Application
    Filed: June 10, 2019
    Publication date: August 12, 2021
    Inventor: Seth D. Cohen
  • Publication number: 20210250018
    Abstract: Technologies are provided for generation of programmable pulse signals using inverse chaotic maps, without reliance on a clocking signal. Some embodiments of the technologies include an apparatus that can receive a sequence of bits having a defined number of bits, where the sequence of bits represent a desired continuous pulse signal having a programmable width in time-domain. The apparatus can also can receive a precursor continuous pulse signal having an arbitrary width in time-domain that fits within the dynamic range of the apparatus. The apparatus can generate the desired continuous pulse signal by transforming the precursor continuous pulse signal using the sequence of bits and an inverse chaotic map.
    Type: Application
    Filed: June 10, 2019
    Publication date: August 12, 2021
    Inventor: Seth D. Cohen