Patents by Inventor Seth Suppappola

Seth Suppappola has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10580411
    Abstract: A change in the phase pattern of the inter-mic impulse response (IMIR), determined by a cross power spectral density, may be used to detect the appearance of a new talker or a dramatic movement of the current talker. For example, the phase of the IMIR is dependent on a location of the sound source relative to the microphone array. Any signal originating from a specific location has a specific phase pattern on the IMIR across the frequency domain. By comparing phase patterns of the current cross power spectral density with a recorded talker phase profile, a talker change can be detected. This detection can be used to control signal processing algorithms. For example, when talker change is detected, the step size of an adaptive filter can be increased to track the changes efficiently.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: March 3, 2020
    Assignee: Cirrus Logic, Inc.
    Inventors: Ying Li, Ghassan Maalouli, Narayan Kovvali, Seth Suppappola
  • Publication number: 20190180014
    Abstract: The reliable differentiation of human and artificial talkers is important for many automatic speaker verification applications, such as in developing anti-spoofing countermeasures against replay attacks for voice biometric authentication. A multi-microphone approach may exploit small movements of human talkers to differentiate between a human talker and an artificial talker. One method of determining the presence or absence of talker movement includes monitoring the variation of the inter-mic frequency-dependent phase profile of the received microphone array data over a period of time. Using spatial information with spectral-based techniques for determining whether an audio source is a human or artificial talker may reduce the likelihood of success of spoofing attacks against a voice biometric authentication system. The anti-spoofing countermeasure may be used in electronic devices including smart home devices, cellular phones, tablets, and personal computers.
    Type: Application
    Filed: December 8, 2017
    Publication date: June 13, 2019
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Narayan Kovvali, Ying Li, Nima Yousefian Jazi, Seth Suppappola
  • Publication number: 20190096429
    Abstract: A multi-microphone algorithm for detecting and differentiating interference sources from desired talker speech in advanced audio processing for smart home applications is described. The approach is based on characterizing a persistent interference source when sounds repeated occur from a fixed spatial location relative to the device, which is also fixed. Some examples of such interference sources include TV, music system, air-conditioner, washing machine, and dishwasher. Real human talkers, in contrast, are not expected to remain stationary and speak continuously from the same position for a long time. The persistency of an acoustic source is established based on identifying historically-recurring inter-microphone frequency-dependent phase profiles in multiple time periods of the audio data. The detection algorithm can be used with a beamforming processor to suppress the interference and for achieving voice quality and automatic speech recognition rate improvements in smart home applications.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 28, 2019
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Narayan Kovvali, Seth Suppappola
  • Publication number: 20190096408
    Abstract: A change in the phase pattern of the inter-mic impulse response (IMIR), determined by a cross power spectral density, may be used to detect the appearance of a new talker or a dramatic movement of the current talker. For example, the phase of the IMIR is dependent on a location of the sound source relative to the microphone array. Any signal originating from a specific location has a specific phase pattern on the IMIR across the frequency domain. By comparing phase patterns of the current cross power spectral density with a recorded talker phase profile, a talker change can be detected. This detection can be used to control signal processing algorithms. For example, when talker change is detected, the step size of an adaptive filter can be increased to track the changes efficiently.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 28, 2019
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Ying Li, Ghassan Maalouli, Narayan Kovvali, Seth Suppappola
  • Publication number: 20190043509
    Abstract: A method and apparatus for audio privacy may be based on user identification. An audio signal containing speech may be analyzed, identifying a user to which the speech belongs and determining a user class for the user. The speech may be uploaded to a remote device based on whether the user class for the user is a public user class or a private user class. This allows certain users to opt-out of having their speech uploaded through public networks. The user identification may be based on voice biometrics.
    Type: Application
    Filed: August 4, 2017
    Publication date: February 7, 2019
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventor: Seth Suppappola
  • Patent number: 10142730
    Abstract: Noise sources may be identified as either an interference source, such as a television, or a talker source by analyzing phase information of the microphone signals. A phase delay variance may be computed from pairs of microphone signals. A profile of an interference source may be learned over time by updating a stored profile when the phase delay variance is below a threshold. The stored profile may be used to identify interference sources received by the microphones by determining a correlation between the microphone signals and the stored profile. When an interference source is detected, control parameters may be generated to control a beamformer to reduce contribution of the interference source to an output audio signal. The output audio signal may be used for speech processing, such as in a smart home device.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: November 27, 2018
    Assignee: Cirrus Logic, Inc.
    Inventors: Nima Yousefian, Seth Suppappola
  • Patent number: 9980070
    Abstract: Test apparatus measuring relative frequency response of first and second microphones includes a rotatable carrier. First and second microphones are sealingly clamped against a mounting surface of the carrier aligned with first and second apertures therein, such apertures lying equidistant from, and on opposite sides of, the carrier's axis of rotation. The carrier initially positions the first microphone closest to an audible signal source, and the responses of the microphones to an audible excitation signal are measured. The carrier is rotated 180 degrees, and the measurements are repeated. Elongated strips of gasket material are used to align the microphones and to form a seal with the carrier. When microphones are mounted deep within an audio device, the audio device is sealingly clamped against a mounting plate, sequentially aligning the mounting plate aperture with first and second apertures of the audio device housing corresponding to first and second microphones disposed therein.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: May 22, 2018
    Assignee: Cirrus Logic, Inc.
    Inventors: Samuel Ponvarma Ebenezer, Seth Suppappola, Clifton Cordes
  • Publication number: 20170251317
    Abstract: Test apparatus measuring relative frequency response of first and second microphones includes a rotatable carrier. First and second microphones are sealingly clamped against a mounting surface of the carrier aligned with first and second apertures therein, such apertures lying equidistant from, and on opposite sides of, the carrier's axis of rotation. The carrier initially positions the first microphone closest to an audible signal source, and the responses of the microphones to an audible excitation signal are measured. The carrier is rotated 180 degrees, and the measurements are repeated. Elongated strips of gasket material are used to align the microphones and to form a seal with the carrier. When microphones are mounted deep within an audio device, the audio device is sealingly clamped against a mounting plate, sequentially aligning the mounting plate aperture with first and second apertures of the audio device housing corresponding to first and second microphones disposed therein.
    Type: Application
    Filed: May 11, 2017
    Publication date: August 31, 2017
    Applicant: Cirrus Logic, Inc.
    Inventors: Samuel Ponvarma Ebenezer, Seth Suppappola, Clifton Cordes
  • Patent number: 9674626
    Abstract: Test apparatus measuring relative frequency response of first and second microphones includes a rotatable carrier. First and second microphones are sealingly clamped against a mounting surface of the carrier aligned with first and second apertures therein, such apertures lying equidistant from, and on opposite sides of, the carrier's axis of rotation. The carrier initially positions the first microphone closest to an audible signal source, and the responses of the microphones to an audible excitation signal are measured. The carrier is rotated 180 degrees, and the measurements are repeated. Elongated strips of gasket material are used to align the microphones and to form a seal with the carrier. When microphones are mounted deep within an audio device, the audio device is sealingly clamped against a mounting plate, sequentially aligning the mounting plate aperture with first and second apertures of the audio device housing corresponding to first and second microphones disposed therein.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: June 6, 2017
    Assignee: Cirrus Logic, Inc.
    Inventors: Samuel Ponvarma Ebenezer, Seth Suppappola, Clifton Cordes
  • Patent number: 8565414
    Abstract: A telephone includes a transmit channel and a receive channel, each including a bank of sub-band filters having a VAD coupled one to each sub-band filter. Each VAD measures the spectral energy in a sub-band, compares the spectral energy to a first threshold, and produces an output signal representative of whether or not the first threshold is exceeded. The voice activity detector also includes a threshold circuit for calculating a dynamically adjustable noise threshold based upon averaged measured spectral energy. A wide band or system VAD monitors echo canceling circuitry to detect voice activity and double talk.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: October 22, 2013
    Assignee: Acoustic Technologies, Inc.
    Inventors: Justin L. Allen, Franklyn H. Story, Seth Suppappola
  • Patent number: 8538008
    Abstract: A system includes a loudspeaker, a microphone, an echo canceling circuit, and an accelerometer coupled to the loudspeaker for providing a reference signal, a(n), to the echo canceling circuit. Preferably, the accelerometer is attached to the loudspeaker. A speaker signal, x(n), is used to drive the loudspeaker and the system also includes a switch for coupling either a(n) or x(n) to the echo canceling circuit, depending upon the volume or loudness of the sounds involved.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: September 17, 2013
    Assignee: Acoustic Technologies, Inc.
    Inventor: Seth Suppappola
  • Publication number: 20100128868
    Abstract: A system includes a loudspeaker, a microphone, an echo canceling circuit, and an accelerometer coupled to the loudspeaker for providing a reference signal, a(n), to the echo canceling circuit. Preferably, the accelerometer is attached to the loudspeaker. A speaker signal, x(n), is used to drive the loudspeaker and the system also includes a switch for coupling either a(n) or x(n) to the echo canceling circuit, depending upon the volume or loudness of the sounds involved.
    Type: Application
    Filed: November 21, 2008
    Publication date: May 27, 2010
    Applicant: Acoustic Technologies, Inc.
    Inventor: Seth Suppappola
  • Patent number: 7649988
    Abstract: A background noise estimate based upon a modified Doblinger noise estimate is used for modulating the output of a pseudo-random phase spectrum generator to produce the comfort noise. The circuit for estimating noise includes a smoothing filter having a slower time constant for updating the noise estimate during noise than during speech. Comfort noise is smoothly inserted by basing the amount of comfort noise on the amount of noise suppression. A discrete inverse Fourier transform converts the comfort noise back to the time domain and overlapping windows eliminate artifacts that may have been produced during processing.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: January 19, 2010
    Assignee: Acoustic Technologies, Inc.
    Inventors: Seth Suppappola, Samuel Ponvarma Ebenezer, Justin L. Allen
  • Patent number: 7570937
    Abstract: Comfort noise is derived from a white noise signal by filtering the white noise signal in a QMF bank to produce comfort noise signal that is selectively coupled to at least one channel in a telephone. Preferably, a plurality of QMF banks are used and the magnitude of the white noise into each filter is controlled in accordance with the magnitude of the signal in a corresponding analysis sub-band in a channel. In accordance with another aspect of the invention, the signals from higher frequency analysis sub-bands are combined and control a single input to a QMF bank, thereby increasing the low frequency resolution of the comfort noise. In accordance with another aspect of the invention, the QMF banks are cascaded upwardly (the output of one bank is coupled to the low pass input of the next bank), which also enhances the low frequency resolution of the comfort noise.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: August 4, 2009
    Assignee: Acoustic Technologies, Inc.
    Inventors: Robert Winston Nowlin, Seth Suppappola
  • Patent number: 7555117
    Abstract: A path change is detected by multiplying the energy of a signal on the output of a summation circuit in one channel of a telephone by a constant to produce a product. The product is compared with the energy of a signal on the input of the summation circuit. A path change is indicated when the energy of the product exceeds the energy of a signal on the input of the summation circuit. The comparison is made in successive frames of an audio signal and a path change is indicated when the energy of a signal on the input of the summation circuit is exceeded in two or more successive frames.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: June 30, 2009
    Assignee: Acoustic Technologies, Inc.
    Inventors: Seth Suppappola, Franklyn H. Story
  • Publication number: 20070025282
    Abstract: A path change is detected by multiplying the energy of a signal on the output of a summation circuit in one channel of a telephone by a constant to produce a product. The product is compared with the energy of a signal on the input of the summation circuit. A path change is indicated when the energy of the product exceeds the energy of a signal on the input of the summation circuit. The comparison is made in successive frames of an audio signal and a path change is indicated when the energy of a signal on the input of the summation circuit is exceeded in two or more successive frames.
    Type: Application
    Filed: July 12, 2005
    Publication date: February 1, 2007
    Applicant: Acoustic Technologies, Inc.
    Inventors: Seth Suppappola, Franklyn Story
  • Publication number: 20050278171
    Abstract: A background noise estimate based upon a modified Doblinger noise estimate is used for modulating the output of a pseudo-random phase spectrum generator to produce the comfort noise. The circuit for estimating noise includes a smoothing filter having a slower time constant for updating the noise estimate during noise than during speech. Comfort noise is smoothly inserted by basing the amount of comfort noise on the amount of noise suppression. A discrete inverse Fourier transform converts the comfort noise back to the time domain and overlapping windows eliminate artifacts that may have been produced during processing.
    Type: Application
    Filed: June 15, 2004
    Publication date: December 15, 2005
    Applicant: Acoustic Technologies, Inc.
    Inventors: Seth Suppappola, Samuel Ebenezer, Justin Allen
  • Publication number: 20050041798
    Abstract: Comfort noise is derived from a white noise signal by filtering the white noise signal in a QMF bank to produce comfort noise signal that is selectively coupled to at least one channel in a telephone. Preferably, a plurality of QMF banks are used and the magnitude of the white noise into each filter is controlled in accordance with the magnitude of the signal in a corresponding analysis sub-band in a channel. In accordance with another aspect of the invention, the signals from higher frequency analysis sub-bands are combined and control a single input to a QMF bank, thereby increasing the low frequency resolution of the comfort noise. In accordance with another aspect of the invention, the QMF banks are cascaded upwardly (the output of one bank is coupled to the low pass input of the next bank), which also enhances the low frequency resolution of the comfort noise.
    Type: Application
    Filed: August 21, 2003
    Publication date: February 24, 2005
    Applicant: Acoustic Technologies, Inc.
    Inventors: Robert Nowlin, Seth Suppappola
  • Publication number: 20040234067
    Abstract: A telephone includes a transmit channel and a receive channel, each including a bank of sub-band filters having a VAD coupled one to each sub-band filter. Each VAD measures the spectral energy in a sub-band, compares the spectral energy to a first threshold, and produces an output signal representative of whether or not the first threshold is exceeded. The voice activity detector also includes a threshold circuit for calculating a dynamically adjustable noise threshold based upon averaged measured spectral energy. A wide band or system VAD monitors echo canceling circuitry to detect voice activity and double talk.
    Type: Application
    Filed: May 19, 2003
    Publication date: November 25, 2004
    Applicant: Acoustic Technologies, Inc.
    Inventors: Justin L. Allen, Franklyn H. Story, Seth Suppappola