Patents by Inventor Seth W. Snyder

Seth W. Snyder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8247009
    Abstract: The present invention provides a method for generating methane from a carbonaceous fuel source with simultaneous sequestration of carbon dioxide, the method comprising anaerobically incubating a particulate alkaline earth metal salt in contact with a particulate and/or dissolved carbonaceous feedstock in a neutral or alkaline aqueous culture medium containing a culture of methanogenic bacteria consortia and collecting methane generated therefrom. At least a portion of carbon dioxide produced during the incubation reacts with the alkaline earth metal salt to form an alkaline earth metal carbonate, thereby sequestering the carbon dioxide.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: August 21, 2012
    Assignee: UChicago Argonne, LLC
    Inventors: Rathin Datta, Seth W. Snyder, Richard D. Doctor, Michael P. Henry
  • Patent number: 8110111
    Abstract: The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: February 7, 2012
    Assignee: U.S. Department of Energy
    Inventors: Yupo J. Lin, Seth W. Snyder
  • Publication number: 20110302830
    Abstract: The invention provides for a novel type of biofuel; a method for cleaving anchors from photosynthetic organisms; and a method for producing biofuels using photosynthetic organisms, the method comprising identifying photosynthesis co-factors and their anchors in the organisms; modifying the organisms to increase production of the anchors; accumulating biomass of the organisms in growth media; and harvesting the anchors.
    Type: Application
    Filed: June 13, 2011
    Publication date: December 15, 2011
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Philip D. Laible, Seth W. Snyder
  • Patent number: 8007647
    Abstract: A bioreactor with an anode and a cathode, and a plurality of reaction chambers each having an inlet and an outlet and each including a porous solid ion exchange wafer having ion-exchange resins. Each of the reaction chambers is interleaved between a cation exchange membrane and an anion exchange membrane or between either a cation or an anion exchange membrane and a bipolar exchange membrane. A product chamber is separated from one of the reaction chambers by either a cation or an anion exchange membrane. Recirculation mechanism is provided for transporting material between the reaction chamber inlets and outlets. A method of producing organic acids, amino acids, or amines using the separative bioreactor is disclosed.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: August 30, 2011
    Assignee: UChicago Argonne, LLC
    Inventors: YuPo J. Lin, Seth W. Snyder, Edward J. St. Martin
  • Patent number: 7981261
    Abstract: The invention provides a system for separating oppositely-charged charge carriers, the substrate comprising a semiconductor; a ligand in electrical communication with said semiconductor; an ion-exchange resin attached to the semiconductor; an ion-exchange membrane; and an electrical conduit attaching said resin to said membrane. Also provided is a method for producing hydrogen gas, comprising: inducing charge separation in semiconductor particles so as to produce electrons and holes; oxidizing water with the holes to produce oxygen ions and protons, wherein the protons are sequestered from the oxygen ions as the protons are produced; and directing the sequestered protons to a cathode. The invention also provides a method to produce electricity comprising, inducing charge separation in semiconductor particles so as to produce electrons and holes, and completing the circuit with an electron hole transporter.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: July 19, 2011
    Assignee: UChicago Argonne, LLC
    Inventors: Tijana Rajh, YuPo Lin, Nada Dimitrijevic, Seth W. Snyder, Norman F. Sather
  • Patent number: 7977395
    Abstract: An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: July 12, 2011
    Assignee: UChicago Argonne, LLC
    Inventors: YuPo J. Lin, Michael P. Henry, Seth W. Snyder
  • Publication number: 20100300894
    Abstract: The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium. A pH suitable for exchange of CO2 is electrochemically maintained within the basic and acidic ion exchange wafers by applying an electric potential across the cathode and anode.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 2, 2010
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: YuPo J. LIN, Seth W. SNYDER, Michael C. TRACHTENBERG, Robert M. COWAN, Saurav DATTA
  • Patent number: 7799548
    Abstract: A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: September 21, 2010
    Assignee: Uchicago Argonne, LLC
    Inventors: Michelle B. Arora, Jamie A. Hestekin, YuPo J. Lin, Edward J. St. Martin, Seth W. Snyder
  • Patent number: 7799225
    Abstract: The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H2O2) from a working solution.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: September 21, 2010
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Seth W. Snyder, Yupo J. Lin, Jamie A. Hestekin, Michael P. Henry, Peter Pujado, Anil Oroskar, Santi Kulprathipanja, Sarabjit Randhava
  • Publication number: 20100093049
    Abstract: The present invention provides a method for generating methane from a carbonaceous fuel source with simultaneous sequestration of carbon dioxide, the method comprising anaerobically incubating a particulate alkaline earth metal salt in contact with a particulate and/or dissolved carbonaceous feedstock in a neutral or alkaline aqueous culture medium containing a culture of methanogenic bacteria consortia and collecting methane generated therefrom. At least a portion of carbon dioxide produced during the incubation reacts with the alkaline earth metal salt to form an alkaline earth metal carbonate, thereby sequestering the carbon dioxide.
    Type: Application
    Filed: September 24, 2009
    Publication date: April 15, 2010
    Applicant: UChicago Argonne, LLC
    Inventors: Rathin Datta, Seth W. Snyder, Richard D. Doctor, Michael P. Henry
  • Publication number: 20090093556
    Abstract: An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.
    Type: Application
    Filed: October 21, 2008
    Publication date: April 9, 2009
    Inventors: YuPo J. Lin, Michael P. Henry, Seth W. Snyder
  • Patent number: 7507318
    Abstract: Devices incorporating a thin wafer of electrically and ionically conductive porous material made by the method of introducing a mixture of a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material into a mold. The mixture is subjected to temperatures in the range of from about 60° C. to about 170° C. at pressures in the range of from about 0 to about 500 psig for a time in the range of from about 1 to about 240 minutes to form thin wafers. Devices include electrodeionization and separative bioreactors in the production of organic and amino acids, alcohols or esters for regenerating cofactors in enzymes and microbial cells.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: March 24, 2009
    Assignee: Uchicago Argonne, LLC
    Inventors: YuPo J. Lin, Michael P. Henry, Seth W. Snyder, Edward St. Martin, Michelle Arora, Linda de la Garza
  • Patent number: 7452920
    Abstract: An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: November 18, 2008
    Assignee: UChicago Argonne, LLC
    Inventors: YuPo J. Lin, Michael P. Henry, Seth W. Snyder
  • Publication number: 20080187902
    Abstract: A bioreactor with an anode and a cathode, and a plurality of reaction chambers each having an inlet and an outlet and each including a porous solid ion exchange wafer having ion-exchange resins. Each of the reaction chambers is interleaved between a cation exchange membrane and an anion exchange membrane or between either a cation or an anion exchange membrane and a bipolar exchange membrane. A product chamber is separated from one of the reaction chambers by either a cation or an anion exchange membrane. Recirculation mechanism is provided for transporting material between the reaction chamber inlets and outlets. A method of producing organic acids, amino acids, or amines using the separative bioreactor is disclosed.
    Type: Application
    Filed: December 27, 2007
    Publication date: August 7, 2008
    Applicant: UChicago Argonne, LLC
    Inventors: YuPo J. Lin, Seth W. Snyder, Edward J. St. Martin
  • Patent number: 7306934
    Abstract: A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: December 11, 2007
    Assignee: UChicago Argonne, LLC
    Inventors: Michelle B. Arora, Jamie A. Hestekin, YuPo J. Lin, Edward J. St. Martin, Seth W. Snyder
  • Patent number: 7141154
    Abstract: A method of and apparatus for continuously making an organic ester from a lower alcohol and an organic acid is disclosed. An organic acid or salt is introduced or produced in an electrode ionization (EDI) stack with a plurality of reaction chambers each formed from a porous solid ion exchange resin wafer interleaved between anion exchange membranes or an anion exchange membrane and a cation exchange membrane or an anion exchange membrane and a bipolar exchange membranes. At least some reaction chambers are esterification chambers and/or bioreactor chambers and/or chambers containing an organic acid or salt. A lower alcohol in the esterification chamber reacts with an anion to form an organic ester and water with at least some of the water splitting with the ions leaving the chamber to drive the reaction.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: November 28, 2006
    Assignee: UChicago Argonne LLC
    Inventors: YuPo J. Lin, Michael Henry, Jamie Hestekin, Seth W. Snyder, Edward J. St. Martin
  • Publication number: 20040115783
    Abstract: A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.
    Type: Application
    Filed: November 5, 2003
    Publication date: June 17, 2004
    Applicant: The University of Chicago
    Inventors: Michelle B. Arora, Jamie A. Hestekin, YuPo J. Lin, Edward J. St. Martin, Seth W. Snyder