Patents by Inventor Setsuro Ito

Setsuro Ito has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8173085
    Abstract: The present invention relates to a method for producing an oxide containing a conductive mayenite type compound and having an electron concentration of 1×1018/cm3 or more, from a raw material which is a combination of a calcium compound and an aluminum compound or is a compound containing calcium and aluminum, each having a molar ratio of calcium oxide and aluminum oxide ranging from 9:10 to 14:5 in terms of the oxides, the method including the steps of: heating and holding the raw material at 900 to 1,300° C. to produce a calcined powder containing at least one oxide selected from the group consisting of a calcium aluminate, calcium oxide and aluminum oxide; and heating and holding the calcined powder at 1,200° C. to less than 1,415° C. under a reduction atmosphere in an inert gas atmosphere or a vacuum atmosphere each having an oxygen partial pressure of 1,000 Pa or less.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: May 8, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Kazuhiro Ito, Satoru Watanabe, Kazunari Watanabe, Setsuro Ito
  • Patent number: 8109118
    Abstract: It is an object of the present invention to provide a method and apparatus for efficiently remove bubbles present on a surface of molten glass, which can solve a problem that bubbles remaining on a surface of molten glass are get inside at a time of forming the glass to cause inside bubbles, to thereby provide a glass substrate of good quality, and which can improve productivity of glass substrates; and to provide a process for producing glass employing the above method for removing bubbles. The present invention provides a method for removing bubbles from molten glass, which is a method for removing floating bubbles on a surface of molten glass, wherein a floating bubble on the surface of molten glass is irradiated with at least one laser beam.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: February 7, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Mitsuru Watanabe, Yutaka Kuroiwa, Motoichi Iga, Setsuro Ito, Yasuji Fukasawa
  • Publication number: 20110278509
    Abstract: To provide a method for preparing a mayenite-containing oxide containing a mayenite type compound and having a hydride ion density of at least 1×1018/cm3 without need for expensive facilities, control of complicated reaction conditions or a long period of reaction time. A method for preparing a mayenite-containing oxide, which comprises a firing step of heating a starting material having a molar ratio of CaO:Al2O3 being from 9:10 to 14:5 based on the oxides at a temperature of from 900 to 1,300° C. to obtain a fired powder and a hydrogenation step of firing the fired powder at a temperature of at least 1,210° C. and lower than 1,350° C.
    Type: Application
    Filed: July 28, 2011
    Publication date: November 17, 2011
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Kazuhiro ITO, Satoru Watanabe, Naomichi Miyakawa, Setsuro Ito, Kazunari Watanabe
  • Publication number: 20110182803
    Abstract: The present invention relates to a method for producing an oxide containing a conductive mayenite type compound and having an electron concentration of 1×1018/cm3 or more, from a raw material which is a combination of a calcium compound and an aluminum compound or is a compound containing calcium and aluminum, each having a molar ratio of calcium oxide and aluminum oxide ranging from 9:10 to 14:5 in terms of the oxides, the method including the steps of: heating and holding the raw material at 900 to 1,300° C. to produce a calcined powder containing at least one oxide selected from the group consisting of a calcium aluminate, calcium oxide and aluminum oxide; and heating and holding the calcined powder at 1,200° C. to less than 1,415° C. under a reduction atmosphere in an inert gas atmosphere or a vacuum atmosphere each having an oxygen partial pressure of 1,000 Pa or less.
    Type: Application
    Filed: April 6, 2011
    Publication date: July 28, 2011
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Kazuhiro ITO, Satoru Watanabe, Kazunari Watanabe, Setsuro Ito
  • Publication number: 20110155970
    Abstract: The present invention relates to a mayenite-type compound in which a part of Ca of a mayenite-type compound containing Ca, Al and oxygen is substituted by at least one kind of an atom M selected from the group consisting of Be, Mg and Sr, in which the mayenite-type compound has an atom number ratio represented by M/(Ca+M) of from 0.01 to 0.50, and at least a part of free oxygen ions in a mayenite-type crystal structure are substituted by anions of an atom having electron affinity smaller than that of an oxygen atom.
    Type: Application
    Filed: February 25, 2011
    Publication date: June 30, 2011
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Kazuhiro ITO, Satoru Watanabe, Naomichi Miyakawa, Setsuro Ito
  • Publication number: 20110068678
    Abstract: The present invention relates to a fluorescent lamp including: a discharge space containing a discharge gas and being surrounded by a glass; a discharge electrode; a phosphor; and a mayenite type compound provided on at least a part of an inner surface contacting the discharge gas. According to the fluorescent lamp of the present invention, a fluorescent lamp that has good luminous efficiency of ultraviolet ray from a discharge gas, has good discharge characteristics such as discharge starting voltage and discharge sustaining voltage in a fluorescent lamp, is chemically stable, has excellent oxidation resistance, has excellent sputtering resistance, and can achieve electric power saving is provided.
    Type: Application
    Filed: November 30, 2010
    Publication date: March 24, 2011
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Satoru WATANABE, Kazuhiro Itoh, Naomichi Miyakawa, Kazunari Watanabe, Setsuro Ito
  • Patent number: 7722846
    Abstract: Provided is a method for preparing an electroconductive mayenite type compound with good properties readily and stably at low cost. A production method of an electroconductive mayenite type compound comprising a step of subjecting a precursor to heat treatment, is a method for preparing an electroconductive mayenite type compound, comprising a step of subjecting a precursor to heat treatment; wherein the precursor is a vitreous or crystalline material, which contains Ca and Al, in which a molar ratio of (CaO:Al2O3) is from (12.6:6.4) to (11.7:7.3) as calculated as oxides, and in which a total amount of CaO and Al2O3 is at least 50 mol %, and wherein the heat treatment is heat treatment comprising holding the precursor at a heat treatment temperature T of from 600 to 1415° C. and in an inert gas or vacuum atmosphere with an oxygen partial pressure PO2 in a range of PO2?105×exp [{?7.9×l04/(T+273)}+14.4] in the unit of Pa.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: May 25, 2010
    Assignees: Asahi Glass Company, Limited, Tokyo Institute of Technology
    Inventors: Hideo Hosono, Katsuro Hayashi, Sung Wng Kim, Masahiro Hirano, Satoru Narushima, Setsuro Ito
  • Patent number: 7670585
    Abstract: Provided is a method for preparing an electroconductive mayenite type compound with good properties readily and stably at low cost without need for expensive facilities, a reaction at high temperature and for a long period of time, or complicated control of reaction. A method for preparing an electroconductive mayenite type compound comprises a step of subjecting a precursor to heat treatment, wherein the precursor contains Ca and/or Sr, and Al, a molar ratio of (a total of CaO and SrO:Al2O3) is from (12.6:6.4) to (11.7:7.3) as calculated as oxides, a total content of CaO, SrO and Al2O3 in the precursor is at least 50 mol %, and the precursor is a vitreous or crystalline material; and the method comprises a step of mixing the precursor with a reducing agent and performing the heat treatment of holding the mixture at 600-1,415° C. in an inert gas or vacuum atmosphere with an oxygen partial pressure of at most 10 Pa.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: March 2, 2010
    Assignees: Asahi Glass Company, Limited, Tokyo Institute of Technology
    Inventors: Hideo Hosono, Katsuro Hayashi, Sung Wng Kim, Masahiro Hirano, Satoru Narushima, Setsuro Ito
  • Publication number: 20090113938
    Abstract: It is an object of the present invention to provide a method and apparatus for efficiently remove bubbles present on a surface of molten glass, which can solve a problem that bubbles remaining on a surface of molten glass are get inside at a time of forming the glass to cause inside bubbles, to thereby provide a glass substrate of good quality, and which can improve productivity of glass substrates; and to provide a process for producing glass employing the above method for removing bubbles. The present invention provides a method for removing bubbles from molten glass, which is a method for removing floating bubbles on a surface of molten glass, wherein a floating bubble on the surface of molten glass is irradiated with at least one laser beam.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 7, 2009
    Applicant: Asahi Glass Company, Limited
    Inventors: Mitsuru Watanabe, Yutaka Kuroiwa, Motoichi Iga, Setsuro Ito, Yasuji Fukasawa
  • Patent number: 7465433
    Abstract: To provide a method for preparing a mayenite type compound having electroconductivity imparted. A method for preparing an electroconductive mayenite type compound, which comprises melting a raw material containing Al and at least one element selected from the group consisting of Ca and Sr, holding the melt in a low oxygen partial pressure atmosphere having an oxygen partial pressure of not higher than 10 Pa, followed by cooling or annealing in a low oxygen partial pressure atmosphere or in atmospheric air for solidification, thereby to replace oxygen present in cages by electrons in a high concentration.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: December 16, 2008
    Assignees: Asahi Glass Company, Limited, Japan Science and Technology Agency
    Inventors: Hideo Hosono, Katsuro Hayashi, Masashi Miyakawa, Masahiro Hirano, Sungwng Kim, Setsuro Ito, Satoru Narushima
  • Publication number: 20080265774
    Abstract: For a PDP, a panel having favorable discharge properties such a high discharge efficiency and a short discharge delay, being chemically stable and capable of electric power saving, is desired. A plasma display panel comprising a front substrate and a rear substrate facing each other via a discharge space, discharge electrodes formed on at least one of the front substrate and the rear substrate, a dielectric layer covering the discharge electrodes, and a protective layer covering the dielectric layer, wherein the protective layer contains a Mayenite compound, and the secondary emission coefficients when Ne and Xe are used as excited ions at an accelerating voltage of 600 V, are respectively at least 0.05 at a secondary electron collector voltage at which secondary electrons can be sufficiently captured.
    Type: Application
    Filed: December 5, 2007
    Publication date: October 30, 2008
    Applicant: ASAHI GLASS COMPANY LIMITED
    Inventors: Satoru WEBSTER, Setsuro ITO
  • Publication number: 20080252194
    Abstract: To provide an electron emitter, a field emission display unit, a cold cathode fluorescent tube and a flat type lighting device, which employ an electron emitting material producible at a low cost and in a large amount. A conductive mayenite type compound powder containing at least 50 mol % of a mayenite type compound represented by a chemical formula of either 12CaO.7Al2O3 or 12SrO.7Al2O3 and having a maximum particle size of at most 100 ?m, is used as an electron emitter, whereby an electron emitter, a field emission display unit, a cold cathode fluorescent tube and a flat type lighting device, are realized that are easy to produce and capable of emitting electrons even at a low applied voltage and whereby a large current can be obtained per the same applied voltage surface.
    Type: Application
    Filed: October 18, 2007
    Publication date: October 16, 2008
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Yutaka KUROIWA, Satoru Narushima, Setsuro Ito
  • Publication number: 20080095688
    Abstract: Provided is a method for preparing an electroconductive mayenite type compound with good properties readily and stably at low cost without need for expensive facilities, a reaction at high temperature and for a long period of time, or complicated control of reaction. A method for preparing an electroconductive mayenite type compound comprises a step of subjecting a precursor to heat treatment, wherein the precursor contains Ca and/or Sr, and Al, a molar ratio of (a total of CaO and SrO:Al2O3) is from (12.6:6.4) to (11.7:7.3) as calculated as oxides, a total content of CaO, SrO and Al2O3 in the precursor is at least 50 mol %, and the precursor is a vitreous or crystalline material; and the method comprises a step of mixing the precursor with a reducing agent and performing the heat treatment of holding the mixture at 600-1,415° C. in an inert gas or vacuum atmosphere with an oxygen partial pressure of at most 10 Pa.
    Type: Application
    Filed: November 30, 2007
    Publication date: April 24, 2008
    Applicants: ASAHI GLASS COMPANY, LIMITED, Tokyo Institute of Technology
    Inventors: Hideo Hosono, Katsuro Hayashi, Sung Kim, Masahiro Hirano, Satoru Narushima, Setsuro Ito
  • Publication number: 20080089826
    Abstract: Provided is a method for preparing an electroconductive mayenite type compound with good properties readily and stably at low cost. A production method of an electroconductive mayenite type compound comprising a step of subjecting a precursor to heat treatment, is a method for preparing an electroconductive mayenite type compound, comprising a step of subjecting a precursor to heat treatment; wherein the precursor is a vitreous or crystalline material, which contains Ca and Al, in which a molar ratio of (CaO:Al2O3) is from (12.6:6.4) to (11.7:7.3) as calculated as oxides, and in which a total amount of CaO and Al2O3 is at least 50 mol %, and wherein the heat treatment is heat treatment comprising holding the precursor at a heat treatment temperature T of from 600 to 1415° C. and in an inert gas or vacuum atmosphere with an oxygen partial pressure PO2 in a range of PO2?105×exp[{?7.9×l04/(T+273)}+14.4] in the unit of Pa.
    Type: Application
    Filed: November 30, 2007
    Publication date: April 17, 2008
    Applicants: ASAHI GLASS COMPANY, LIMITED, Tokyo Institute of Technology
    Inventors: Hideo Hosono, Katsuro Hayashi, Sung Kim, Masahiro Hirano, Satoru Narushima, Setsuro Ito
  • Publication number: 20080037014
    Abstract: It is an object of the present invention to provide a new method for reducing the diameter of a bubble existing in a glass plate. Specifically, the present invention provides a method for reducing the diameter of a bubble existing in a glass plate, which comprises irradiating the vicinity of the bubble existing in the glass plate with a light beam emitted from a light source, to raise the temperature of the glass in the vicinity of the bubble to at least the melting point of the glass to reduce the maximum diameter of the bubble.
    Type: Application
    Filed: October 15, 2007
    Publication date: February 14, 2008
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Yutaka KUROIWA, Setsuro Ito, Motoichi Iga
  • Publication number: 20060276326
    Abstract: To provide a method for preparing a mayenite type compound having electroconductivity imparted. A method for preparing an electroconductive mayenite type compound, which comprises melting a raw material containing Al and at least one element selected from the group consisting of Ca and Sr, holding the melt in a low oxygen partial pressure atmosphere having an oxygen partial pressure of not higher than 10 Pa, followed by cooling or annealing in a low oxygen partial pressure atmosphere or in atmospheric air for solidification, thereby to replace oxygen present in cages by electrons in a high concentration.
    Type: Application
    Filed: August 14, 2006
    Publication date: December 7, 2006
    Applicants: ASAHI GLASS COMPANY, LIMITED, JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Katsuro Hayashi, Masashi Miyakawa, Masahiro Hirano, Sungwng Kim, Setsuro Ito, Satoru Narushima
  • Patent number: 6656584
    Abstract: A glass fiber comprising core glass and clad glass, wherein the core glass consists essentially of from 25 to 70 mol % of Bi2O3, from 5 to 74.89 mol % of B2O3+SiO2, from 0.1 to 30 mol % of Al2O3+Ga2O3, and from 0 to 10 mol % of CeO2.
    Type: Grant
    Filed: November 24, 2000
    Date of Patent: December 2, 2003
    Assignee: Asahi Glass Company, Limited
    Inventors: Naoki Sugimoto, Setsuro Ito
  • Patent number: 6653251
    Abstract: An optical amplifying glass having Er doped in an amount of from 0.01 to 10% as represented by mass percentage to a matrix glass comprising, by mol %, BiO2: 20 to 80, B2O3+SiO2: 5 to 75, Ga2O3+WO3+TeO2: 0.1 to 35, Al2O3≦10, GeO2≦30, TiO2≦30, and SnO2≦30, and containing no CeO2.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: November 25, 2003
    Assignee: Asahi Glass Company, Limited
    Inventors: Naoki Sugimoto, Setsuro Ito
  • Patent number: 6620748
    Abstract: An optical amplifying glass comprising a matrix glass and, added thereto, from 0.01 to 10 wt % of Er, characterized in that said matrix glass substantially comprises, as represented by mol %, 20 to 80 of Bi2O3, 0 to 74.89 of B2O3, 0 to 79.99 of SiO2, 0.01 to 10 of CeO2, 0 to 50 of Li2O, 0 to 50 of TiO2, 0 to 50 of ZrO2, 0 to 50 of SnO2, 0 to 30 of WO3, 0 to 30 of TeO2, 0 to 30 of Ga2O3 and 0 to 10 of Al2O3, with the proviso that said matrix glass contains at least one of B2O3 and SiO2.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: September 16, 2003
    Inventors: Naoki Sugimoto, Yutaka Kuroiwa, Setsuro Ito, Setsuhisa Tanabe, Teiichi Hanada
  • Patent number: 6599852
    Abstract: An optical amplifying glass comprising a matrix glass and from 0.001 to 10% by mass percentage of Tm doped to the matrix glass, wherein the matrix glass contains from 15 to 80 mol % of Bi2O3 and further contains at least one component selected from the group consisting of SiO2, B2O3 and GeO2.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: July 29, 2003
    Assignee: Asahi Glass Company, Limited
    Inventors: Yuki Kondo, Setsuro Ito, Naoki Sugimoto, Tatsuo Nagashima, Setsuhisa Tanabe