Patents by Inventor Setsuro Ogata

Setsuro Ogata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11519082
    Abstract: An organic hydride production apparatus includes: an electrolyte membrane having proton conductivity; a cathode that includes a cathode catalyst layer used to hydrogenate a hydrogenation target substance using protons to produce an organic hydride and also includes a cathode chamber; an anode that includes an anode catalyst layer used to oxidize water to produce protons and also includes an anode chamber; and a gas introduction unit that introduces, into the anolyte at a certain position, a certain gas used to remove at least one of the hydrogenation target substance and the organic hydride that have passed through the electrolyte membrane and been mixed into the anolyte.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: December 6, 2022
    Assignees: NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY, DE NORA PERMELEC LTD.
    Inventors: Shigenori Mitsushima, Kensaku Nagasawa, Yoshinori Nishiki, Akihiro Kato, Setsuro Ogata, Awaludin Zaenal, Akiyoshi Manabe, Koji Matsuoka, Yasushi Sato
  • Publication number: 20220333257
    Abstract: An organic hydride production apparatus includes: an electrolyte membrane having proton conductivity; a cathode, provided on one side of the electrolyte membrane, that contains a cathode catalyst used to hydrogenate a hydrogenation target substance using protons to produce an organic hydride; an anode, provided opposite to the one side of the electrolyte membrane, that contains an anode catalyst used to oxidize water to produce protons; and an anode support, provided opposite to the electrolyte membrane side of the anode, that supports the anode. The anode support is formed of an elastic porous body of which the Young's modulus is greater than 0.1 N/mm2 and less than 43 N/mm2.
    Type: Application
    Filed: July 6, 2022
    Publication date: October 20, 2022
    Applicants: National University Corporation YOKOHAMA National University, DE NORA PERMELEC LTD
    Inventors: Shigenori MITSUSHIMA, Kensaku NAGASAWA, Yoshinori NISHIKI, Setsuro OGATA, Akihiro KATO, Awaludin ZAENAL, Koji MATSUOKA, Yasushi SATO
  • Publication number: 20200080212
    Abstract: An organic hydride production apparatus includes: an electrolyte membrane having proton conductivity; a cathode, provided on one side of the electrolyte membrane, that contains a cathode catalyst used to hydrogenate a hydrogenation target substance using protons to produce an organic hydride; an anode, provided opposite to the one side of the electrolyte membrane, that contains an anode catalyst used to oxidize water to produce protons; and an anode support, provided opposite to the electrolyte membrane side of the anode, that supports the anode. The anode support is formed of an elastic porous body of which the Young's modulus is greater than 0.1 N/mm2 and less than 43 N/mm2.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 12, 2020
    Applicants: National University Corporation YOKOHAMA National University, DE NORA PERMELEC LTD
    Inventors: Shigenori MITSUSHIMA, Kensaku NAGASAWA, Yoshinori NISHIKI, Setsuro OGATA, Akihiro KATO, Awaludin ZAENAL, Koji MATSUOKA, Yasushi SATO
  • Publication number: 20190352786
    Abstract: An organic hydride production apparatus includes: an electrolyte membrane having proton conductivity; a cathode that includes a cathode catalyst layer used to hydrogenate a hydrogenation target substance using protons to produce an organic hydride and also includes a cathode chamber; an anode that includes an anode catalyst layer used to oxidize water to produce protons and also includes an anode chamber; and a gas introduction unit that introduces, into the anolyte at a certain position, a certain gas used to remove at least one of the hydrogenation target substance and the organic hydride that have passed through the electrolyte membrane and been mixed into the anolyte.
    Type: Application
    Filed: October 18, 2017
    Publication date: November 21, 2019
    Applicants: National University Corporation YOKOHAMA National University, DE NORA PERMELEC LTD
    Inventors: Shigenori MITSUSHIMA, Kensaku NAGASAWA, Yoshinori NISHIKI, Akihiro KATO, Setsuro OGATA, Awaludin ZAENAL, Akiyoshi MANABE, Koji MATSUOKA, Yasushi SATO
  • Publication number: 20190264340
    Abstract: An organic hydride production apparatus includes: an electrolyte membrane having proton conductivity; a cathode that includes a cathode catalyst layer used to hydrogenate a hydrogenation target substance using protons to produce an organic hydride and also includes a cathode chamber; an anode that includes an anode catalyst layer used to oxidize water to produce protons and also includes an anode chamber; and a gas introduction unit that introduces, into the anolyte at a certain position, a certain gas used to remove at least one of the hydrogenation target substance and the organic hydride that have passed through the electrolyte membrane and been mixed into the anolyte.
    Type: Application
    Filed: May 15, 2019
    Publication date: August 29, 2019
    Applicants: National University Corporation YOKOHAMA National University, DE NORA PERMELEC LTD
    Inventors: Shigenori MITSUSHIMA, Kensaku NAGASAWA, Yoshinori NISHIKI, Akihiro KATO, Setsuro OGATA, Awaludin ZAENAL, Akiyoshi MANABE, Koji MATSUOKA, Yasushi SATO
  • Patent number: 9175410
    Abstract: The current invention is to provide an oxygen gas diffusion cathode for brine electrolysis which reduces an initial electrolysis voltage and is excellent in the durability against short-circuit, and an electrolytic cell and an electrolytic method using the same. The oxygen gas diffusion cathode for brine electrolysis includes a gas diffusion layer 13 and a reaction layer 14 on one surface of an electro-conductive substrate 12, and an electro-conductive layer 15 on the opposite surface thereof. The present oxygen gas diffusion cathode reduces the resistance of the electro-conductive substrate 12 and supplies uniform current by mounting the electro-conductive layer 15.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: November 3, 2015
    Assignees: PERMELEC ELECTRODE LTD., KANEKA CORPORATION, TOAGOSEI CO., LTD., CHLORINE ENGINEERS CORP., LTD.
    Inventors: Yuki Izawa, Setsuro Ogata, Masaharu Uno, Masashi Tanaka
  • Publication number: 20130037415
    Abstract: The current invention is to provide an oxygen gas diffusion cathode for brine electrolysis which reduces an initial electrolysis voltage and is excellent in the durability against short-circuit, and an electrolytic cell and an electrolytic method using the same. The oxygen gas diffusion cathode for brine electrolysis includes a gas diffusion layer 13 and a reaction layer 14 on one surface of an electro-conductive substrate 12, and an electro-conductive layer 15 on the opposite surface thereof. The present oxygen gas diffusion cathode reduces the resistance of the electro-conductive substrate 12 and supplies uniform current by mounting the electro-conductive layer 15.
    Type: Application
    Filed: February 15, 2011
    Publication date: February 14, 2013
    Inventors: Yuki Izawa, Setsuro Ogata, Masaharu Uno, Masashi Tanaka
  • Patent number: 8349164
    Abstract: The present invention provides a conductive diamond electrode structure for use in electrolytic synthesis of a fluorine-containing material with a fluoride ion-containing molten salt electrolytic bath, which comprises: a conductive electrode feeder; and a conductive diamond catalyst carrier comprising a conductive substrate and a conductive diamond film carried on a surface thereof, wherein the conductive diamond catalyst carrier is detachably attached to the conductive electrode feeder at a portion to be immersed in the electrolytic bath. Also disclosed is an electrolytic synthesis of a fluorine-containing material using the conductive diamond electrode structure.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: January 8, 2013
    Assignee: Permelec Electrode Ltd.
    Inventors: Tsuneto Furuta, Setsuro Ogata, Masaharu Uno
  • Publication number: 20080314759
    Abstract: The present invention provides a conductive diamond electrode structure for use in electrolytic synthesis of a fluorine-containing material with a fluoride ion-containing molten salt electrolytic bath, which comprises: a conductive electrode feeder; and a conductive diamond catalyst carrier comprising a conductive substrate and a conductive diamond film carried on a surface thereof, wherein the conductive diamond catalyst carrier is detachably attached to the conductive electrode feeder at a portion to be immersed in the electrolytic bath. Also disclosed is an electrolytic synthesis of a fluorine-containing material using the conductive diamond electrode structure.
    Type: Application
    Filed: June 20, 2008
    Publication date: December 25, 2008
    Applicant: PERMELEC ELECTRODE LTD.
    Inventors: Tsuneto FURUTA, Setsuro OGATA, Masaharu UNO
  • Patent number: 6432293
    Abstract: A process for copper-plating a wafer which comprises electroplating a semiconductor wafer with an electrode comprising a corrosion-resistant metal substrate and a coat mainly composed of iridium oxide provided on the substrate as an anode and the wafer as a cathode in a solution containing copper ion. The anode is preferably an insoluble electrode comprising a corrosion-resistant metal substrate and a coat mainly composed of iridium oxide and further containing a metal or metal oxide selected from platinum, tantalum, titanium, niobium and oxides of these metals provided on the substrate. A neutral membrane or ion exchange membrane may be interposed between the anode and the cathode as a separating membrane.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: August 13, 2002
    Assignee: Permelec Electrode Ltd.
    Inventors: Setsuro Ogata, Kenichi Ueno
  • Patent number: 6328861
    Abstract: An electrolytic apparatus which comprises effecting electrolysis of an electrolytic solution in an electrolytic chamber separated from a reaction chamber by a hydrogen-storing metal member with one surface of the hydrogen-storing metal member as a cathode opposing an anode so that hydrogen thus produced is adsorbed by the hydrogen-storing metal member while allowing hydrogen thus adsorbed and a material to be treated to undergo continuous catalytic reaction in the reaction chamber on the other surface of the hydrogen-storing metal member to cause hydrogenation or reduction reaction by hydrogen thus adsorbed, wherein an electrolytic apparatus having a porous catalyst layer provided on the catalytic reaction surface of the hydrogen-storing metal member is used.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: December 11, 2001
    Assignee: Permelec Electrode Ltd.
    Inventors: Yasuki Yoshida, Setsuro Ogata, Masaharu Uno, Masashi Tanaka, Yoshinori Nishiki, Takayuki Shimamune, Hiroshi Inoue, Chiaki Iwakura
  • Patent number: 6296754
    Abstract: A method of reducing nitrous oxide which comprises introducing nitrous oxide into a reaction chamber disposed in contact with an electrolytic chamber having an anode and a cathode comprising a hydrogen-absorbing material, the cathode serving as a diaphragm separating the reaction chamber and the electrolytic chamber, and contacting the nitrous oxide with the diaphragm to thereby continuously reduce the nitrous oxide with hydrogen atoms electrolytically generated on the cathode, absorbed by the hydrogen-absorbing material and passing through the diaphragm. The cathode preferably has catalyst comprising a platinum group metal black deposited on the side of the cathode opposite the anode. Also disclosed is an electrolytic cell for the reduction of nitrous oxide partitioned with a diaphragm into an electrolytic chamber having an anode and a reduction reaction chamber, the diaphragm comprising a hydrogen-absorbing material, and the side of the diaphragm facing the electrolytic chamber serving as a cathode.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: October 2, 2001
    Assignee: Kabushiki Kaisha Maruzen Create
    Inventors: Yasuki Yoshida, Setsuro Ogata, Yoshinori Nishiki, Shuji Nakamatsu, Hiroshi Inoue, Chiaki Iwakura
  • Patent number: 6251254
    Abstract: An electrode adapted for chromium plating from trivalent chromium baths which comprises a conductive base, an electrode material layer comprising iridium oxide formed thereon, and a porous layer formed on the surface of the electrode material layer. The porous can comprise an oxide containing at least one element selected from the group consisting of silicon, molybdenum, titanium, tantalum, zirconium, and tungsten. Use of this electrode for chromium plating reduces the oxidation of trivalent chromium into hexavalent chromium.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: June 26, 2001
    Assignee: Permelec Electrode Ltd.
    Inventors: Masaaki Katoh, Miwako Nara, Yukiei Matsumoto, Setsuro Ogata
  • Patent number: 6238530
    Abstract: A cathode for electrolysis comprising a hydrogen-occluding material for use in an electrolytic cell partitioned by the cathode into two chambers including a reaction chamber and an electrolysis chamber. The cell is arranged so that a reactant is reduced or hydrogenated in the reaction chamber. The cathode comprises an ion exchange membrane or porous membrane. A first layer made of a hydrogen-occluding metallic palladium or a palladium alloy is formed on the reaction chamber side of the membrane. A second layer which is a porous catalyst layer made of a platinum metal black or gold is formed on the first layer. Also disclosed is an electrolytic cell using the cathode for electrolysis.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: May 29, 2001
    Assignee: Permelec Electrode Ltd.
    Inventors: Yasuki Yoshida, Masashi Tanaka, Setsuro Ogata, Hiroshi Inoue, Chiaki Iwakura
  • Patent number: 6224741
    Abstract: An electrolytic process which can operate in a hydrogen reaction chamber at a hydrogen reaction rate corresponding to the increase in the rate of production of hydrogen accompanying the increase in the electrolysis rate and maintain the current efficiency at a very high value with respect to the electrolytic current for producing hydrogen and a process for the production of an electrode for this purpose.
    Type: Grant
    Filed: August 10, 1998
    Date of Patent: May 1, 2001
    Assignee: Peremelec Electrode Ltd.
    Inventors: Yasuki Yoshida, Setsuro Ogata, Masaharu Uno, Masashi Tanaka, Yoshinori Nishiki, Takayuki Shimamune, Hiroshi Inoue, Chiaki Iwakura
  • Patent number: 6099914
    Abstract: An electrolytic process and apparatus which can operate in a hydrogen reaction chamber at a hydrogen reaction rate corresponding to the increase in the rate of production of hydrogen accompanying the increase in the electrolysis rate and maintain the current efficiency at a very high value with respect to the electrolytic current for producing hydrogen and a process for the production of an electrode for this purpose.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: August 8, 2000
    Assignee: Permelec Electrode Ltd.
    Inventors: Yasuki Yoshida, Setsuro Ogata, Masaharu Uno, Masashi Tanaka, Yoshinori Nishiki, Takayuki Shimamune, Hiroshi Inoue, Chiaki Iwakura
  • Patent number: 5900127
    Abstract: An electrode for electrolysis comprising an electrode base material and an electrode substance having an electrically conductive diamond structure covering the surface of the electrode base material. The electrode substance having an electrically conductive diamond structure may be a diamond containing an impurity selected from boron, phosphorus and graphite. Alternatively, the electrode substance having an electrically conductive diamond structure may comprise a composite of a diamond and an electrically conductive material. In a preferred embodiment, the electrode further comprises an interlayer comprising at least one of the carbide of a valve metal and silicon carbide disposed between the electrode base material and the electrode substance having an electrically conductive diamond structure. Also disclosed is an electrolytic cell having two chambers including an anode chamber and a cathode chamber partitioned by an ion-exchange membrane.
    Type: Grant
    Filed: April 2, 1997
    Date of Patent: May 4, 1999
    Assignee: Permelec Electrode Ltd.
    Inventors: Masamori Iida, Yoshinori Nishiki, Takayuki Shimamune, Setsuro Ogata, Masashi Tanaka, Shuhei Wakita, Shun Takahashi