Patents by Inventor Seung Cheol Ryu

Seung Cheol Ryu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10681783
    Abstract: A method of setting luminance levels of a solid-state light sources of a luminaire with programmable light distribution is provided. The method includes obtaining a file describing a desired light beam distribution, converting the desired light beam distribution into luminance levels for the solid-state light sources, and applying the luminance levels to the solid-state light sources to cause the luminaire to output the desired light beam distribution.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: June 9, 2020
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Rodrigo Pereyra, Michael Quilici, Seung Cheol Ryu, Alan Sarkisian
  • Patent number: 10609776
    Abstract: A method of setting luminance levels of a solid-state light sources of a luminaire with programmable light distribution is provided. The method includes obtaining a file describing a desired light beam distribution, converting the desired light beam distribution into luminance levels for the solid-state light sources, and applying the luminance levels to the solid-state light sources to cause the luminaire to output the desired light beam distribution.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: March 31, 2020
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Rodrigo Pereyra, Michael Quilici, Seung Cheol Ryu, Alan Sarkisian
  • Patent number: 10568179
    Abstract: Techniques and user interfaces (UIs) are disclosed for controlling a solid-state luminaire having an electronically adjustable light beam distribution. The disclosed UI may be configured, in accordance with some embodiments, to provide a user with the ability to control, by wireless and/or wired connection, the light distribution of an associated solid-state luminaire in a given space. The UI may be hosted by any computing device, portable or otherwise, and may be used to control any given light distribution capability provided by a paired luminaire. In accordance with some embodiments, the user may provide such control without need to know details about the luminaire, such as the quantity of solid-state lamps, or their individual addresses, or the address of the fixture itself. In some cases, the disclosed techniques may involve acquiring spatial information of the space that hosts the luminaire and/or providing user-selected distribution of light within that space.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: February 18, 2020
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Mervyn Anthony, Michael Quilici, Seung Cheol Ryu, Jeff Holt
  • Publication number: 20190342965
    Abstract: A method of setting luminance levels of a solid-state light sources of a luminaire with programmable light distribution is provided. The method includes obtaining a file describing a desired light beam distribution, converting the desired light beam distribution into luminance levels for the solid-state light sources, and applying the luminance levels to the solid-state light sources to cause the luminaire to output the desired light beam distribution.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Applicant: Osram Sylvania Inc.
    Inventors: Rodrigo Pereyra, Michael Quilici, Seung Cheol Ryu, Alan Sarkisian
  • Publication number: 20190342964
    Abstract: A method of setting luminance levels of a solid-state light sources of a luminaire with programmable light distribution is provided. The method includes obtaining a file describing a desired light beam distribution, converting the desired light beam distribution into luminance levels for the solid-state light sources, and applying the luminance levels to the solid-state light sources to cause the luminaire to output the desired light beam distribution.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Applicant: Osram Sylvania Inc.
    Inventors: Rodrigo Pereyra, Michael Quilici, Seung Cheol Ryu, Alan Sarkisian
  • Patent number: 10412802
    Abstract: A method of setting luminance levels of a solid-state light sources of a luminaire with programmable light distribution is provided. The method includes obtaining a file describing a desired light beam distribution, converting the desired light beam distribution into luminance levels for the solid-state light sources, and applying the luminance levels to the solid-state light sources to cause the luminaire to output the desired light beam distribution.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: September 10, 2019
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Rodrigo Pereyra, Michael Quilici, Seung Cheol Ryu, Alan Sarkisian
  • Patent number: 10237951
    Abstract: A luminaire having an electronically adjustable light beam distribution to provide upward illumination creating color gradients on a ceiling. The color gradients may be in patterns that mimic color gradients of a sky, including, for example, color gradients that mimic sunrise, sunset, sun at different times of day, a rainy day, clouds, the sun, moon, etc. The color gradients may change over time and/or may include one or more objects, e.g. clouds, the sun, moon, etc. and/or may move and/or change over time to create a dynamic sky on the ceiling. Multiple luminaires may be controlled by a system controller to produce coordinated color gradients across the light distribution areas of the multiple luminaires.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: March 19, 2019
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Michael A. Quilici, Holger Sacher, Seung Cheol Ryu
  • Patent number: 10161610
    Abstract: A luminaire having an electronically adjustable light beam distribution is disclosed. In accordance with some embodiments, the disclosed luminaire includes a housing, for example, of hemi-cylindrical, oblate hemi-cylindrical, oblong elliptical, or polyhedral shape. The disclosed luminaire also includes a plurality of solid-state light sources arranged over its housing, in accordance with some embodiments. The one or more solid-state emitters of a given solid-state light source may be addressable individually and/or in one or more groupings, in some embodiments. As such, the solid-state light sources can be electronically controlled individually and/or in conjunction with one another, providing for highly adjustable light emissions from the host luminaire, in accordance with some embodiments. One or more heat sinks may be mounted on the housing to assist with heat dissipation for the solid-state light sources.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: December 25, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Michael Quilici, Seung Cheol Ryu, Lori Brock
  • Publication number: 20180255616
    Abstract: A method of setting luminance levels of a solid-state light sources of a luminaire with programmable light distribution is provided. The method includes obtaining a file describing a desired light beam distribution, converting the desired light beam distribution into luminance levels for the solid-state light sources, and applying the luminance levels to the solid-state light sources to cause the luminaire to output the desired light beam distribution.
    Type: Application
    Filed: March 2, 2017
    Publication date: September 6, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Rodrigo Pereyra, Michael Quilici, Seung Cheol Ryu, Alan Sarkisian
  • Patent number: 10056018
    Abstract: Lighting methods and systems to enhance the browsing behaviors of shoppers in a manner intended to be primarily subconscious include illumination of a targeted area, such as a typical retail display, with a tunable spectrum lamp that slowly cycles through different illumination spectra such that color rendering of illuminated target is deliberately varied for subtle arousal of the visual senses. The illumination spectra, and the rates at which spectral conditions are changed, are both chosen as such that multi-colored objects in the targeted area change in appearance in a barely noticeable way, such that shoppers may find their visual attention redirected, seemingly at random, to a wider variety of products on display. Color spectrum changes also may be controlled in coordination with predefined packaging colors to create quasi-animation effects.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: August 21, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Joseph Laski, Charles Brunault, Seung Cheol Ryu, Rebecca Schmidt
  • Patent number: 10015868
    Abstract: Solid-state lamps having an electronically adjustable light beam distribution are disclosed. In accordance with some embodiments, a lamp configured as described herein includes a plurality of solid-state emitters (addressable individually and/or in groupings) mounted over a non-planar interior surface of the lamp. The interior mounting surface can be concave or convex, as desired, and may be of hemispherical or hyper-hemispherical geometry, among others, in accordance with some example embodiments. In some embodiments, the heat sink of the lamp may be configured to provide the interior mounting surface, whereas in some other embodiments, a separate mounting interface, such as a parabolic aluminized reflector (PAR), a bulged reflector (BR), or a multi-faceted reflector (MR), may be included to such end. Also, the lamp may include one or more focusing optics for modifying its output. In some cases, a lamp provided as described herein may be configured for retrofitting existing lighting structures.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: July 3, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Michael Quilici, Seung Cheol Ryu, Lori Brock
  • Patent number: 9976725
    Abstract: A luminaire having an electronically adjustable light beam distribution is disclosed. In some embodiments, the disclosed luminaire includes a plurality of solid-state lamps mounted on one or more surfaces of a housing. The lamps can be electronically controlled individually and/or in conjunction with one another, for example, to provide highly adjustable light emissions from the luminaire (e.g., pixelated control over light distribution). In some cases, a given solid-state lamp may include tunable electro-optic componentry to provide it with its own electronically adjustable light beam. One or more heat sinks optionally may be mounted on the housing to assist with heat dissipation for the solid-state lamps. The luminaire can be configured to be mounted or as a free-standing lighting device, in accordance with some embodiments. In some embodiments, the aperture through which the lamps provide illumination is smaller than the distribution area of the solid-state lamps of the luminaire.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: May 22, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Seung Cheol Ryu, Michael Quilici
  • Publication number: 20180073686
    Abstract: A lighting device including one or more solid state light sources having an electronically adjustable light beam distribution is disclosed. The lighting device may be a lamp configured to include one or more light source modules, each including one or more solid-state emitters populated over a printed circuit board (PCB). The lamp further may include one or more optics configured to modify the output of its one or more light source modules. For a given module, the one or more emitters thereof may be arranged, for example, in a matrix, cellular array, concentric array, or other arrangement, as desired for a given target application or end-use. A given emitter may be addressable individually, in one or more groupings, or both. In some cases, a lamp provided as described herein may be configured for retrofitting existing lighting structures.
    Type: Application
    Filed: September 14, 2016
    Publication date: March 15, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Michael A. Quilici, Seung Cheol Ryu
  • Patent number: 9801260
    Abstract: Techniques and user interfaces (UIs) are disclosed for controlling a solid-state luminaire having an electronically adjustable light beam distribution. The disclosed UI may be configured, in accordance with some embodiments, to provide a user with the ability to control, by wireless and/or wired connection, the light distribution of an associated solid-state luminaire in a given space. The UI may be hosted by any computing device, portable or otherwise, and may be used to control any given light distribution capability provided by a paired luminaire. In accordance with some embodiments, the user may provide such control without need to know details about the luminaire, such as the quantity of solid-state lamps, or their individual addresses, or the address of the fixture itself. In some cases, the disclosed techniques may involve acquiring spatial information of the space that hosts the luminaire and/or providing user-selected distribution of light within that space.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: October 24, 2017
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Mervyn Anthony, Michael Quilici, Seung Cheol Ryu, Jeff Holt
  • Patent number: 9587805
    Abstract: A luminaire having an electronically adjustable light beam distribution is disclosed. In some embodiments, the disclosed luminaire includes a plurality of solid-state lamps mounted on one or more surfaces of a housing. The lamps can be electronically controlled individually and/or in conjunction with one another, for example, to provide highly adjustable light emissions from the luminaire (e.g., pixelated control over light distribution). In some cases, a given solid-state lamp may include tunable electro-optic componentry to provide it with its own electronically adjustable light beam. One or more heat sinks optionally may be mounted on the housing to assist with heat dissipation for the solid-state lamps. The luminaire can be configured to be mounted or as a free-standing lighting device, in accordance with some embodiments. In some embodiments, the aperture through which the lamps provide illumination is smaller than the distribution area of the solid-state lamps of the luminaire.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: March 7, 2017
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Seung Cheol Ryu, Michael Quilici
  • Patent number: 9374854
    Abstract: Solid-state lamps having an electronically adjustable light beam distribution are disclosed. In accordance with some embodiments, a lamp configured as described herein includes a plurality of solid-state emitters (addressable individually and/or in groupings) mounted over a non-planar interior surface of the lamp. The interior mounting surface can be concave or convex, as desired, and may be of hemispherical or hyper-hemispherical geometry, among others, in accordance with some example embodiments. In some embodiments, the heat sink of the lamp may be configured to provide the interior mounting surface, whereas in some other embodiments, a separate mounting interface, such as a parabolic aluminized reflector (PAR), a bulged reflector (BR), or a multi-faceted reflector (MR), may be included to such end. Also, the lamp may include one or more focusing optics for modifying its output. In some cases, a lamp provided as described herein may be configured for retrofitting existing lighting structures.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: June 21, 2016
    Assignee: OSRAM SYLVANIA INC.
    Inventors: Michael Quilici, Seung Cheol Ryu, Lori Brock
  • Publication number: 20160123541
    Abstract: Solid-state lamps having an electronically adjustable light beam distribution are disclosed. In accordance with some embodiments, a lamp configured as described herein includes a plurality of solid-state emitters (addressable individually and/or in groupings) mounted over a non-planar interior surface of the lamp. The interior mounting surface can be concave or convex, as desired, and may be of hemispherical or hyper-hemispherical geometry, among others, in accordance with some example embodiments. In some embodiments, the heat sink of the lamp may be configured to provide the interior mounting surface, whereas in some other embodiments, a separate mounting interface, such as a parabolic aluminized reflector (PAR), a bulged reflector (BR), or a multi-faceted reflector (MR), may be included to such end. Also, the lamp may include one or more focusing optics for modifying its output. In some cases, a lamp provided as described herein may be configured for retrofitting existing lighting structures.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 5, 2016
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Michael Quilici, Seung Cheol Ryu, Lori Brock
  • Publication number: 20160123564
    Abstract: A luminaire having an electronically adjustable light beam distribution is disclosed. In accordance with some embodiments, the disclosed luminaire includes a housing, for example, of hemi-cylindrical, oblate hemi-cylindrical, oblong elliptical, or polyhedral shape. The disclosed luminaire also includes a plurality of solid-state light sources arranged over its housing, in accordance with some embodiments. The one or more solid-state emitters of a given solid-state light source may be addressable individually and/or in one or more groupings, in some embodiments. As such, the solid-state light sources can be electronically controlled individually and/or in conjunction with one another, providing for highly adjustable light emissions from the host luminaire, in accordance with some embodiments. One or more heat sinks may be mounted on the housing to assist with heat dissipation for the solid-state light sources.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 5, 2016
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Michael Quilici, Seung Cheol Ryu, Lori Brock
  • Publication number: 20160128140
    Abstract: Solid-state lamps having an electronically adjustable light beam distribution are disclosed. In accordance with some embodiments, a lamp configured as described herein includes a plurality of solid-state emitters (addressable individually and/or in groupings) mounted over a non-planar interior surface of the lamp. The interior mounting surface can be concave or convex, as desired, and may be of hemispherical or hyper-hemispherical geometry, among others, in accordance with some example embodiments. In some embodiments, the heat sink of the lamp may be configured to provide the interior mounting surface, whereas in some other embodiments, a separate mounting interface, such as a parabolic aluminized reflector (PAR), a bulged reflector (BR), or a multi-faceted reflector (MR), may be included to such end. Also, the lamp may include one or more focusing optics for modifying its output. In some cases, a lamp provided as described herein may be configured for retrofitting existing lighting structures.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 5, 2016
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Michael Quilici, Seung Cheol Ryu, Lori Brock
  • Patent number: 9332619
    Abstract: A luminaire having a plurality of power sockets arranged over its housing is disclosed. In some embodiments, the luminaire includes a driver operatively coupled with all (or some sub-set) of the power sockets and configured to control the light output of a modular solid-state light source operatively interfaced therewith. In some such embodiments, the luminaire also includes a power-line communication (PLC) module configured to output a PLC signal utilized by the driver in controlling the modular light source's output. In some other embodiments, the modular light source includes the driver, which may utilize a PLC signal, a command signal received from a remote source, or both, in controlling light output. In some cases, the modular solid-state light sources may allow the luminaire to produce a target light beam distribution utilizing a minimal or otherwise reduced quantity of such light sources, reducing cost and difficulty of installation and commissioning.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: May 3, 2016
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Joseph Allen Olsen, Michael Quilici, Seung Cheol Ryu