Patents by Inventor Seung Hun Eom

Seung Hun Eom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11802106
    Abstract: The present invention relates to a novel cathode buffer layer material, and an organic or organic/inorganic hybrid photoelectric device comprising same, and, if a novel compound of the present invention is applied to a cathode buffer layer of an organic photoelectric device such as organic solar cells, organic photodiode, colloidal quantum dot solar cell, and perovskite solar cell, a surface property of an electron transfer layer is improved via a high dipole moment of the novel compound, an electron can be easily extracted from a photoactive layer to a cathode electrode, and series resistance and leakage current can be reduced, thereby having a useful industrial effect, as performance of the organic or organic/inorganic hybrid photoelectric device being manufactured, such as an organic solar cell, organic photodiode, colloidal quantum dot solar cell, and perovskite solar cell, can be significantly improved.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: October 31, 2023
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Sung Cheol Yoon, Chang Jin Lee, Jaemin Lee, Seung Hun Eom, Seung Hoon Lee, Ju Hyoung Jung
  • Patent number: 11767318
    Abstract: The present invention relates to a novel cathode buffer layer material and an organic photoelectric device including the same. When the novel compound of the present invention is applied to a cathode buffer layer of an organic photoelectric device, for example, an organic solar cell or an organic photodiode, there is an effect in which the surface characteristics of an electron transport layer are improved through the high dipole moment of the novel compound to thereby facilitate electron extraction from a photoactive layer to a cathode electrode and to reduce series resistance and leakage current, and accordingly, the performance of an organic optoelectronic device (organic solar cell, organic photodiode, etc.) to be manufactured can be remarkably improved, which is industrially advantageous.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: September 26, 2023
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Sung Cheol Yoon, Chang Jin Lee, Jaemin Lee, Seung Hun Eom
  • Publication number: 20210198188
    Abstract: The present invention relates to a novel cathode buffer layer material, and an organic or organic/inorganic hybrid photoelectric device comprising same, and, if a novel compound of the present invention is applied to a cathode buffer layer of an organic photoelectric device such as organic solar cells, organic photodiode, colloidal quantum dot solar cell, and perovskite solar cell, a surface property of an electron transfer layer is improved via a high dipole moment of the novel compound, an electron can be easily extracted from a photoactive layer to a cathode electrode, and series resistance and leakage current can be reduced, thereby having a useful industrial effect, as performance of the organic or organic/inorganic hybrid photoelectric device being manufactured, such as an organic solar cell, organic photodiode, colloidal quantum dot solar cell, and perovskite solar cell, can be significantly improved.
    Type: Application
    Filed: April 22, 2019
    Publication date: July 1, 2021
    Applicant: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Sung Cheol Yoon, Chang Jin Lee, Jaemin Lee, Seung Hun Eom, Seung Hoon Lee, Ju Hyoung Jung
  • Publication number: 20210032237
    Abstract: The present invention relates to a novel cathode buffer layer material and an organic photoelectric device including the same. When the novel compound of the present invention is applied to a cathode buffer layer of an organic photoelectric device, for example, an organic solar cell or an organic photodiode, there is an effect in which the surface characteristics of an electron transport layer are improved through the high dipole moment of the novel compound to thereby facilitate electron extraction from a photoactive layer to a cathode electrode and to reduce series resistance and leakage current, and accordingly, the performance of an organic optoelectronic device (organic solar cell, organic photodiode, etc.) to be manufactured can be remarkably improved, which is industrially advantageous.
    Type: Application
    Filed: July 17, 2018
    Publication date: February 4, 2021
    Inventors: Sung Cheol Yoon, Chang Jin Lee, Jaemin Lee, Seung Hun Eom