Patents by Inventor Seung-Il Jung

Seung-Il Jung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160097129
    Abstract: Disclosed herein is a method for fabricating metal and oxide hybrid-coated nanocarbon, comprising: a) coating nanocarbon with an oxide to give oxide-coated nanocarbon; b) coating the oxide-coated nanocarbon with a metal by electroless plating to give metal and oxide hybrid-coated nanocarbon; and c) crystallizing the metal and oxide hybrid-coated nanocarbon through thermal treatment at a high temperature. Also, the metal and oxide hybrid-coated nanocarbon fabricated using the method is provided.
    Type: Application
    Filed: January 9, 2015
    Publication date: April 7, 2016
    Inventors: Seung-Il JUNG, Joo-Ho CHA, Jae-Deuk KIM
  • Publication number: 20130295815
    Abstract: Provided are an electron emission source, a display apparatus using the same, an electronic device, and a method of manufacturing the display apparatus. The electron emission source includes a substrate, a cathode separately manufactured from the substrate, and a needle-shaped electron emission material layer, e.g., carbon nanotube (CNT) layer, fixed to the cathode by an adhesive layer. The CNT layer is formed by a suspension filtering method, and electron emission density is increased by a subsequent taping process on the electron emission material layer.
    Type: Application
    Filed: July 11, 2013
    Publication date: November 7, 2013
    Applicant: KOREA UNIVERSITY INDUSTRIAL & ACADEMIC COLLABORATION FOUNDATION
    Inventors: Cheol Jin LEE, Seung Il Jung
  • Publication number: 20130243974
    Abstract: A method of preparing a nickel-coated nanocarbon using electroless plating is provided. The method includes washing a nanocarbon with a solvent or thermally-oxidizing the nanocarbon to remove impurities from the nanocarbon, immersing the washed or thermally-oxidized nanocarbon into a Pd-containing solution to form an activated Pd seed on a surface of the nanocarbon, treating the nanocarbon having the Pd seed with a strong acid, immersing the strong acid-treated nanocarbon into an electroless nickel plating solution to form a nickel plated layer on a surface of the nanocarbon, and heat-treating the nanocarbon having the nickel plated layer at a high temperature to crystallize the nanocarbon.
    Type: Application
    Filed: January 21, 2013
    Publication date: September 19, 2013
    Applicant: DH HOLDINGS CO., LTD.
    Inventors: Seung-Il JUNG, Ju-Hyung KIM, Jae-Deuk KIM
  • Patent number: 8513870
    Abstract: Provided are an electron emission source, a display apparatus using the same, an electronic device, and a method of manufacturing the display apparatus. The electron emission source includes a substrate, a cathode separately manufactured from the substrate, and a needle-shaped electron emission material layer, e.g., carbon nanotube (CNT) layer, fixed to the cathode by an adhesive layer. The CNT layer is formed by a suspension filtering method, and electron emission density is increased by a subsequent taping process on the electron emission material layer.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: August 20, 2013
    Assignee: Korea University Industrial & Academic Cooperation Foundation
    Inventors: Cheol Jin Lee, Seung Il Jung
  • Patent number: 8193692
    Abstract: Surface field electron emitters using a carbon nanotube yarn and a method of fabricating the same are disclosed. To fabricate the carbon nanotube yarn for use in fabrication of simple and efficient carbon nanotube field electron emitters, the method performs densification of the carbon nanotube yarn during rotation of a plying unit and heat treatment of the carbon nanotube yarn that has passed through the plying unit without using organic or inorganic binders or polymer pastes. The method fabricates the carbon nanotube yarn with excellent homogeneity and reproducibility through a simple process. The carbon nanotube yarn-based surface field electron emitters can be applied to various light emitting devices.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: June 5, 2012
    Assignee: Korea University Industrial & Academic Collaboration Foundation
    Inventors: Cheol-Jin Lee, Seung-Il Jung, Guohai Chen
  • Publication number: 20100316792
    Abstract: A method of fabricating an electron emission source and a method of fabricating an electronic device by using the method. An electron emission material layer of the electron emission source is formed by filtration and transfer, and a mask including windows (openings) having predetermined patterns is used in a transfer process so that an electron emission layer having a desired shape may be freely obtained.
    Type: Application
    Filed: January 12, 2010
    Publication date: December 16, 2010
    Applicant: KOREA UNIVERSITY INDUSTRY AND ACADEMY COOPERATION FOUNDATION
    Inventors: Cheol Jin Lee, Seung Il Jung, Dong Hoon Shin
  • Publication number: 20100181896
    Abstract: Surface field electron emitters using a carbon nanotube yarn and a method of fabricating the same are disclosed. To fabricate the carbon nanotube yarn for use in fabrication of simple and efficient carbon nanotube field electron emitters, the method performs densification of the carbon nanotube yarn during rotation of a plying unit and heat treatment of the carbon nanotube yarn that has passed through the plying unit without using organic or inorganic binders or polymer pastes. The method fabricates the carbon nanotube yarn with excellent homogeneity and reproducibility through a simple process. The carbon nanotube yarn-based surface field electron emitters can be applied to various light emitting devices.
    Type: Application
    Filed: February 19, 2009
    Publication date: July 22, 2010
    Applicant: KOREA UNIVERSITY INDUSTRIAL & ACADEMIC COLLABORATION FOUNDATION
    Inventors: Cheol-Jin Lee, Seung-Il Jung, Guohai Chen