Patents by Inventor Seunghwan Yoon
Seunghwan Yoon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12068766Abstract: The present disclosure relates to an electronic device for radiating an output signal in a wireless communication system. In one embodiment, the electronic device includes: a power amplifier configure to receive an input signal; a splitter connected to the power amplifier, which a plurality of branches; a plurality of filters connected to the plurality of branches of the splitter; and a plurality of antenna elements connected to the plurality of filters. The plurality of antenna elements radiates the output signal that is a portion of the input signal received by the power amplifier.Type: GrantFiled: December 5, 2022Date of Patent: August 20, 2024Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Seunghwan Yoon, Dongsik Shin, Dongjoo Kim, Danbi Jeon, Jongwook Zeong, Dabin Choi, Bonmin Koo, Jonghwa Kim, Jihye Kim, Haegweon Park
-
Patent number: 12046820Abstract: An antenna module that includes an antenna substrate, a plurality of three-dimensional (3-D) antenna cells on a first surface of the antenna substrate, a plurality of packaged circuitry on a second surface of the antenna substrate, and a plurality of supporting balls mounted on the second surface of the antenna substrate. The plurality of packaged circuitry includes a plurality of radio-frequency (RF) chips on the second surface of the antenna substrate. Each of the plurality of 3-D antenna cells comprises a raised antenna patch with a plurality of projections and a plurality of supporting legs, where at least a relief cut is provided between one of the plurality of projections and one of the plurality of supporting legs.Type: GrantFiled: September 13, 2022Date of Patent: July 23, 2024Assignee: Movandi CorporationInventors: Seunghwan Yoon, Zhihui Wang, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
-
Patent number: 12003029Abstract: An antenna module that includes an antenna substrate, a plurality of three-dimensional (3-D) antenna cells on a first surface of the antenna substrate, a plurality of packaged circuitry on a second surface of the antenna substrate, and a plurality of supporting balls mounted on the second surface of the antenna substrate. The plurality of packaged circuitry includes a plurality of radio-frequency (RF) chips on the second surface of the antenna substrate. Each of the plurality of 3-D antenna cells comprises a raised antenna patch with a plurality of projections and a plurality of supporting legs, where at least a relief cut is provided between one of the plurality of projections and one of the plurality of supporting legs.Type: GrantFiled: September 13, 2022Date of Patent: June 4, 2024Assignee: Movandi CorporationInventors: Seunghwan Yoon, Zhihui Wang, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
-
Patent number: 11990978Abstract: An active repeater device includes a primary sector and at least a secondary sector communicatively coupled to the primary sector receives or transmits a first beam of input RF signals having a first beam pattern from or to a base station, respectively. The primary sector includes an baseband signal processor and a first radio head (RH) unit. The secondary sector comprises a second RH unit. Beamforming coefficients are generated to convert the first beam pattern of the first beam of input RF signals to a second beam pattern based on a location of each of a plurality of user equipment (UEs). A second beam of output RF signals in the second beam pattern is transmitted from or received by, respectively, the secondary sector to or from, respectively, the plurality of UEs based on the generated beamforming coefficients and the received first beam of input RF signals.Type: GrantFiled: August 15, 2022Date of Patent: May 21, 2024Assignee: Movandi CorporationInventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
-
Patent number: 11956061Abstract: An active repeater device includes a primary sector and at least a secondary sector communicatively coupled to the primary sector receives or transmits a first beam of input RF signals having a first beam pattern from or to a base station, respectively. The primary sector includes an baseband signal processor and a first radio head (RH) unit. The secondary sector comprises a second RH unit. Beamforming coefficients are generated to convert the first beam pattern of the first beam of input RF signals to a second beam pattern based on a location of each of a plurality of user equipment (UEs). A second beam of output RF signals in the second beam pattern is transmitted from or received by, respectively, the secondary sector to or from, respectively, the plurality of UEs based on the generated beamforming coefficients and the received first beam of input RF signals.Type: GrantFiled: August 15, 2022Date of Patent: April 9, 2024Assignee: Movandi CorporationInventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
-
Patent number: 11916642Abstract: An active repeater device includes a primary sector and at least a secondary sector communicatively coupled to the primary sector receives or transmits a first beam of input RF signals having a first beam pattern from or to a base station, respectively. The primary sector includes an baseband signal processor and a first radio head (RH) unit. The secondary sector comprises a second RH unit. Beamforming coefficients are generated to convert the first beam pattern of the first beam of input RF signals to a second beam pattern based on a location of each of a plurality of user equipment (UEs). A second beam of output RF signals in the second beam pattern is transmitted from or received by, respectively, the secondary sector to or from, respectively, the plurality of UEs based on the generated beamforming coefficients and the received first beam of input RF signals.Type: GrantFiled: August 15, 2022Date of Patent: February 27, 2024Assignee: Movandi CorporationInventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
-
Patent number: 11901635Abstract: An apparatus includes a plurality of antenna modules and a printed circuit board (PCB) having a plurality of holes embedded with a heat sink. Each antenna module includes an antenna substrate, a plurality of three-dimensional (3-D) antenna cells mounted on a first surface of the antenna substrate, and a plurality of packaged circuitry mounted on a second surface of the antenna substrate. The plurality of packaged circuitry are electrically connected with the plurality of 3-D antenna cells. Each of the plurality of antenna modules is mounted on a plurality of portions of the heat sink such that a corresponding packaged circuitry of the plurality of packaged circuitry is in a direct contact with the plurality of portions of the heat sink embedded within the plurality of holes.Type: GrantFiled: August 30, 2022Date of Patent: February 13, 2024Assignee: MOVANDI CORPORATIONInventors: Seunghwan Yoon, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
-
Patent number: 11855356Abstract: An apparatus includes a plurality of antenna modules and a printed circuit board (PCB) having a plurality of holes embedded with a heat sink. Each antenna module includes an antenna substrate, a plurality of three-dimensional (3-D) antenna cells mounted on a first surface of the antenna substrate, and a plurality of packaged circuitry mounted on a second surface of the antenna substrate. The plurality of packaged circuitry are electrically connected with the plurality of 3-D antenna cells. Each of the plurality of antenna modules is mounted on a plurality of portions of the heat sink such that a corresponding packaged circuitry of the plurality of packaged circuitry is in a direct contact with the plurality of portions of the heat sink embedded within the plurality of holes.Type: GrantFiled: August 30, 2022Date of Patent: December 26, 2023Assignee: MOVANDI CORPORATIONInventors: Seunghwan Yoon, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
-
Patent number: 11848496Abstract: A communication device includes a system board that includes a plurality of chips. Each chip in plurality of chips includes a plurality of antennas. A system cover coupled to system board includes a plurality of lenses. Each lens is configured to cover an antenna of plurality of antennas as a radome enclosure. Each lens includes a base, and a first tubular membrane coupled to base. A second membrane coupled to first tubular membrane. First tubular membrane and Second membrane cause the lens to have a bell shape. A support structure coupled to first tubular membrane. Support structure facilitates coupling of plurality of lenses to system cover. Each chip comprises a feeder array that further comprises a plurality of antenna elements that are positioned at a proximal distance from base of a lens, A distribution of a gain of input RF signals is substantially equalized across plurality of antenna elements.Type: GrantFiled: August 23, 2021Date of Patent: December 19, 2023Assignee: Movandi CorporationInventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan
-
Patent number: 11811468Abstract: A system, in a radio frequency (RF) transmitter device, selects one or more reflector devices that comprises an active reflector device, along an optimized non-line-of-sight (NLOS) radio path based on a defined criteria. Further, the selected one or more reflector devices are controlled based on one or more conditions. The optimized NLOS radio path is determined from a plurality of NLOS radio paths. In an RF receiver device that communicates with the selected one or more reflector devices using the determined optimized NLOS path. The active reflector device comprises at least a first antenna array and a second antenna array. The first antenna array transmits a first set of beams of RF signals to at least the RF transmitter device and the RF receiver device. The second antenna array receives a second set of beams of RF signals from at least the RF transmitter device and the RF receiver device.Type: GrantFiled: November 29, 2021Date of Patent: November 7, 2023Assignee: Movandi CorporationInventors: Seunghwan Yoon, Ahmadreza Rofougaran
-
Publication number: 20230318205Abstract: A wireless communications system includes a first transceiver with a first phased array antenna panel having horizontal-polarization receive antennas and vertical-polarization transmit antennas, where the horizontal-polarization receive antennas form a first receive beam based on receive phase and receive amplitude information provided by a first master chip, the vertical-polarization transmit antennas form a first transmit beam based on transmit phase and transmit amplitude information provided by the first master chip.Type: ApplicationFiled: May 31, 2023Publication date: October 5, 2023Inventors: Ahmadreza ROFOUGARAN, Farid SHIRINFAR, Sam GHARAVI, Michael BOERS, Seunghwan YOON, Alfred Grau Besoli, Maryam ROFOUGARAN
-
Publication number: 20230299463Abstract: A phased array antenna panel includes a first plurality of antennas, a first radio frequency (RF) front end chip, a second plurality of antennas, a second RF front end chip, and a combiner RF chip. The first and second RF front end chips receive respective first and second input signals from the first and second pluralities of antennas, and produce respective first and second output signals based on the respective first and second input signals. The combiner RF chip can receive the first and second output signals and produce a power combined output signal that is a combination of powers of the first and second output signals. Alternatively, a power combiner can receive the first and second output signals and produce a power combined output signal, and the combiner RF chip can receive the power combined output signal.Type: ApplicationFiled: May 24, 2023Publication date: September 21, 2023Inventors: Ahmadreza ROFOUGARAN, Seunghwan YOON, Alfred Grau Besoli, Farid SHIRINFAR, Sam GHARAVI, Michael BOERS, Maryam ROFOUGARAN
-
Publication number: 20230299500Abstract: A communication device includes a system board that includes a plurality of chips. Each chip in plurality of chips includes a plurality of antennas. A system board cover coupled to system board includes a plurality of lenses. Each lens is configured to cover an antenna of plurality of antennas as a radome enclosure. Each lens includes a base and a first tubular membrane coupled to base. A second membrane is coupled to the first tubular membrane. A support structure is coupled to the first tubular membrane. The support structure facilitates coupling of plurality of lenses to system board cover. The system board cover includes a feeder array that includes a plurality of antenna elements that are positioned at a proximal distance from base of a lens and the proximal distance of the system board from the base of the lens is less than a focal length of the lens.Type: ApplicationFiled: May 22, 2023Publication date: September 21, 2023Inventors: Ahmadreza ROFOUGARAN, Alfred Grau Besoli, Seunghwan YOON, Farid SHIRINFAR, Sam GHARAVI, Michael BOERS, Maryam ROFOUGARAN, Enver Adas, Kartik SRIDHARAN
-
Publication number: 20230299501Abstract: A method in a communication device that includes a system board having a plurality of chips is described. The method includes receiving a lens-guided beam of input radio frequency (RF) signals through a lens, where each chip of the plurality of chip comprises a plurality of antennas, the lens covers a chip of the plurality of chips, adjusting a proximal distance between the lens and the chip such that the proximal distance is less than a focal length of the lens, and substantially equalizing a distribution of a gain from the received lens-guided beam of the input RF signals from a radiation surplus region to a radiation deficient region based on a defined shape of the lens and the proximal distance.Type: ApplicationFiled: May 22, 2023Publication date: September 21, 2023Inventors: Ahmadreza ROFOUGARAN, Alfred Grau Besoli, Seunghwan YOON, Farid SHIRINFAR, Sam GHARAVI, Michael BOERS, Maryam ROFOUGARAN, Enver Adas, Kartik SRIDHARAN
-
Patent number: 11764486Abstract: An antenna system that includes a plurality of chips and a beam forming phased array. The beam forming phased array includes a plurality of radiating waveguide antenna cells. Each radiating waveguide antenna cell includes a plurality of pins that are connected to ground. A body of each radiating waveguide antenna cell corresponds to the ground. The plurality of chips are electrically connected with the plurality of pins and the ground of each of the plurality of radiating waveguide antenna cells to control beamforming through a second end of the plurality of radiating waveguide antenna cells.Type: GrantFiled: November 1, 2022Date of Patent: September 19, 2023Assignee: Movandi CorporationInventors: Seunghwan Yoon, Ahmadreza Rofougaran, Sam Gharavi, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran, Alfred Grau Besoli, Enver Adas, Zhihui Wang
-
Patent number: 11742586Abstract: A communication device includes a first lens, a feeder array, and control circuitry communicatively coupled to the feeder array. The first lens is associated with a defined shape, which further exhibits a defined distribution of dielectric constant. The feeder array includes a plurality of antenna elements that are positioned in proximity to the first lens. The control circuitry equalizes a distribution of a gain from the received first lens-guided beam of input RF signals across the feeder array and different scan directions of the plurality of antenna elements. The equalized distribution of gain is based on the defined distribution of dielectric constant within the first lens and the proximity of the feeder array to the first lens.Type: GrantFiled: July 22, 2021Date of Patent: August 29, 2023Assignee: Movandi CorporationInventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan
-
Patent number: 11742895Abstract: In a first radio frequency (RF) device, circuits determine a non-line-of-sight (NLOS) radio path, and select a first plurality of reflector devices associated with the NLOS radio path from a second plurality of reflector devices. The first plurality of reflector devices, are selected based on a first set of criteria, includes an active reflector device and a passive reflector device, and are controlled to transmit a plurality of RF signals to a second RF device based on a second set of criteria. The second RF device is associated with electronic devices. The first RF signal interferes with a second RF signal of the RF signals. A first type of signal associated with the plurality of RF signals is converted to a second type of signal at the second RF device, and the second type of signal is transmitted by the second RF device to the one or more electronic devices.Type: GrantFiled: March 22, 2021Date of Patent: August 29, 2023Assignee: Movandi CorporationInventors: Ahmadreza Rofougaran, Seunghwan Yoon
-
Patent number: 11728881Abstract: An active repeater device including a first antenna array, a controller, and one or more secondary sectors receives or transmits a first beam of input RF signals from or to, respectively, a first base station operated by a first service provider and a second beam of input RF signals from or to, respectively, a second base station operated by a second service provider. A controller assigns a first beam setting to a first group of customer premises equipment (CPEs) and a second beam setting to a second group of CPEs, based on one or more corresponding signal parameters associated with the each corresponding group of CPEs. A second antenna array of the second RH unit concurrently transmits or received a first beam of output RF signals to or from the first group of CPEs and a second beam of output RF signals to the second group of CPEs.Type: GrantFiled: March 22, 2021Date of Patent: August 15, 2023Assignee: Movandi CorporationInventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
-
Patent number: 11721914Abstract: An antenna system that includes a plurality of chips and a beam forming phased array. The beam forming phased array includes a plurality of radiating waveguide antenna cells. Each radiating waveguide antenna cell includes a plurality of pins that are connected to ground. A body of each radiating waveguide antenna cell corresponds to the ground. The plurality of chips are electrically connected with the plurality of pins and the ground of each of the plurality of radiating waveguide antenna cells to control beamforming through a second end of the plurality of radiating waveguide antenna cells.Type: GrantFiled: November 1, 2022Date of Patent: August 8, 2023Assignee: Movandi CorporationInventors: Seunghwan Yoon, Ahmadreza Rofougaran, Sam Gharavi, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran, Alfred Grau Besoli, Enver Adas, Zhihui Wang
-
Patent number: 11721910Abstract: A communication device includes a lens having a defined shape. A feeder array comprising a plurality of antenna elements that are positioned in a specified proximal distance from the lens to receive a lens-guided beam of input radio frequency (RF) signals through the lens. The specified proximal distance is less than a focal length of the lens. The lens covers the feeder array as a radome enclosure. A distribution of a gain from the received lens-guided beam of input RF signals is substantially equalized from a radiation surplus region to a radiation deficient region of the feeder array to increase at least a reception sensitivity of the plurality of antenna elements for at least the lens-guided beam of input RF signals, based on the defined shape of the lens and the specified proximal distance of the feeder array to the lens.Type: GrantFiled: August 23, 2021Date of Patent: August 8, 2023Assignee: Movandi CorporationInventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan