Patents by Inventor Seungyong Hahn

Seungyong Hahn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11581115
    Abstract: A superconducting coil module includes: a first coil composed of a superconducting wire material wound multiple times; and a first heating device coupled to one surface of the first coil and including at least one first heating pattern controlling a threshold current for each turn of the first coil as a minimum threshold current, wherein at least one first heating pattern is disposed on a path according to a predetermined ratio between the inner and outer boundaries of the first coil.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: February 14, 2023
    Assignee: SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION
    Inventors: Seungyong Hahn, Uijong Bong, Jaemin Kim, Chaemin Im, Jeseok Bang, Soobin An, Jung Tae Lee
  • Patent number: 11551840
    Abstract: An active feedback controller for a power supply current of a no-insulation (NI) high-temperature superconductor (HTS) magnet to reduce or eliminate the charging delay of the NI HTS magnet and to linearize the magnet constant.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: January 10, 2023
    Inventors: Seungyong Hahn, David Larbalestier
  • Publication number: 20220392679
    Abstract: A superconducting coil module includes: a superconducting coil configured by winding a superconducting wire a plurality of times; and a magnetic dam wound along a shape of the superconducting coil, and electromagnetically coupled. The magnetic dam may include a conductive structure device insulated from the superconducting coil, and implemented by a conductive wire wound along the shape of the superconducting coil a plurality of times, and a control circuit controlling current which flows to the magnetic dam during charging and discharging of the superconducting coil between both terminals of the conductive wire.
    Type: Application
    Filed: August 23, 2021
    Publication date: December 8, 2022
    Inventors: Seungyong HAHN, Soobin AN, Kibum CHOI, Chaemin IM, Jeseok BANG
  • Publication number: 20220102040
    Abstract: An active feedback controller for a power supply current of a no-insulation (NI) high-temperature superconductor (HTS) magnet to reduce or eliminate the charging delay of the NI HTS magnet and to linearize the magnet constant.
    Type: Application
    Filed: July 27, 2021
    Publication date: March 31, 2022
    Applicant: The Florida State University Research Foundation, Inc.
    Inventors: Seungyong Hahn, David Larbalestier
  • Patent number: 11094438
    Abstract: An active feedback controller for a power supply current of a no-insulation (NI) high-temperature superconductor (HTS) magnet to reduce or eliminate the charging delay of the NI HTS magnet and to linearize the magnet constant.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: August 17, 2021
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Seungyong Hahn, David Larbalestier
  • Publication number: 20210082610
    Abstract: A superconducting coil module includes: a first coil composed of a superconducting wire material wound multiple times; and a first heating device coupled to one surface of the first coil and including at least one first heating pattern controlling a threshold current for each turn of the first coil as a minimum threshold current, wherein at least one first heating pattern is disposed on a path according to a predetermined ratio between the inner and outer boundaries of the first coil.
    Type: Application
    Filed: September 17, 2020
    Publication date: March 18, 2021
    Inventors: Seungyong HAHN, Uijong BONG, Jaemin KIM, Chaemin IM, Jeseok BANG, Soobin AN, Jung Tae LEE
  • Patent number: 10804018
    Abstract: The present invention is a superconducting partial insulation magnet and a method for providing the same. The magnet includes a coil with a non-insulated superconducting wire winding wound around a bobbin. The coil has a first wire layer, a second wire layer substantially surrounding the first layer, and a first layer of insulating material disposed between the first wire layer and the second wire layer. Each wire layer comprises a plurality of turns, and the first layer of insulating material substantially insulates the second wire layer from the first wire layer.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: October 13, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Seungyong Hahn, YoungJae Kim, John Peter Voccio, Juan Bascunan, Yukikazu Iwasa
  • Patent number: 10580573
    Abstract: A superconducting magnet and method for making a superconducting magnet are presented. The superconducting magnet is made by forming a coil from windings of a first wire comprising a reacted MgB2 monofilament, filling a cavity of a stainless steel billet with a Mg+B powder. Monofilament ends of the first wire and a similar second wire are sheared at an acute angle and inserted into the billet. A copper plug configured to partially fill the billet cavity is inserted into the billet cavity. A portion of the billet adjacent to the plug and the wires is sealed with a ceramic paste.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: March 3, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Seungyong Hahn, Yukikazu Iwasa, Juan Bascunan, John Peter Voccio, Jiayin Ling, Jungbin Song, YoungJae Kim
  • Publication number: 20190088391
    Abstract: An active feedback controller for a power supply current of a no-insulation (NI) high-temperature superconductor (HTS) magnet to reduce or eliminate the charging delay of the NI HTS magnet and to linearize the magnet constant.
    Type: Application
    Filed: November 6, 2018
    Publication date: March 21, 2019
    Inventors: Seungyong Hahn, David Larbalestier
  • Publication number: 20190074119
    Abstract: A superconducting coil, including at least one high-temperature superconducting (HTS) no-insulation (NI) conductor wound about a longitudinal axis to form a pancake coil, wherein the at least one HTS NI conductor comprises one or more defects.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 7, 2019
    Inventors: Seungyong Hahn, Kwang Lok Kim
  • Patent number: 10079092
    Abstract: High-temperature superconducting (HTS) devices and methods are disclosed. An HTS cable subassembly has a rectangular shaped cross section. The subassembly includes a stack of tapes formed of a superconducting material, and a cable subassembly wrapper wrapped around the stack of tapes. The tapes in the stack are slidably arranged in a parallel fashion. A cable assembly is formed of a cable assembly wrapper formed of a second non-superconducting material disposed around an n×m array of cable subassemblies. Within a cable assembly, a first cable subassembly of the array of subassemblies is oriented substantially perpendicular to a second cable subassembly with regard to the plurality of tapes. A compound-cable assembly is formed by joining two or more cable assemblies. A high-temperature superconducting magnet is formed of a solenoidal magnet as well as dipole and quadrupole magnets wound of a cable subassembly, a cable assembly, and/or a compound cable assembly.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: September 18, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Yukikazu Iwasa, Juan Bascuñán, Seungyong Hahn
  • Patent number: 10062485
    Abstract: High-temperature superconducting (HTS) devices and methods are disclosed. An HTS cable subassembly has a rectangular shaped cross section. The subassembly includes a stack of tapes formed of a superconducting material, and a cable subassembly wrapper wrapped around the stack of tapes. The tapes in the stack are slidably arranged in a parallel fashion. A cable assembly is formed of a cable assembly wrapper formed of a second non-superconducting material disposed around an n×m array of cable subassemblies. A compound cable assembly is formed by joining two or more cable assemblies. A high temperature superconducting magnet is formed of a solenoidal magnet formed of a cable subassembly, a cable assembly, and/or a compound cable assembly.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: August 28, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Yukikazu Iwasa, Juan Bascuñán, Seungyong Hahn
  • Publication number: 20180025823
    Abstract: The present invention is a superconducting partial insulation magnet and a method for providing the same. The magnet includes a coil with a non-insulated superconducting wire winding wound around a bobbin. The coil has a first wire layer, a second wire layer substantially surrounding the first layer, and a first layer of insulating material disposed between the first wire layer and the second wire layer. Each wire layer comprises a plurality of turns, and the first layer of insulating material substantially insulates the second wire layer from the first wire layer.
    Type: Application
    Filed: September 21, 2017
    Publication date: January 25, 2018
    Inventors: Seungyong Hahn, YoungJae Kim, John Peter Voccio, Juan Bascunan, Yukikazu lwasa
  • Patent number: 9799435
    Abstract: The present invention is a superconducting partial insulation magnet and a method for providing the same. The magnet includes a coil with a non-insulated superconducting wire winding wound around a bobbin. The coil has a first wire layer, a second wire layer substantially surrounding the first layer, and a first layer of insulating material disposed between the first wire layer and the second wire layer. Each wire layer comprises a plurality of turns, and the first layer of insulating material substantially insulates the second wire layer from the first wire layer.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: October 24, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Seungyong Hahn, YoungJae Kim, John Peter Voccio, Juan Bascunan, Yukikazu Iwasa
  • Publication number: 20170186535
    Abstract: A superconducting magnet and method for making a superconducting magnet are presented. The superconducting magnet is made by forming a coil from windings of a first wire comprising a reacted MgB2 monofilament, filling a cavity of a stainless steel billet with a Mg+B powder. Monofilament ends of the first wire and a similar second wire are sheared at an acute angle and inserted into the billet. A copper plug configured to partially fill the billet cavity is inserted into the billet cavity. A portion of the billet adjacent to the plug and the wires is sealed with a ceramic paste.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 29, 2017
    Inventors: Seungyong Hahn, Yukikazu lwasa, Juan Bascunan, John Peter Voccio, Jiayin Ling, Jungbin Song, YoungJae Kim
  • Patent number: 9627119
    Abstract: A superconducting magnet and method for making a superconducting magnet, are presented. The superconducting magnet is made by forming a coil from windings of a first wire comprising a reacted MgB2 monofilament, filling a cavity of a stainless steel billet with a Mg+B powder. Monofilament ends of the first wire and a similar second wire are sheared at an acute angle and inserted into the billet. A copper plug configured to partially fill the billet cavity is inserted into the billet cavity. A portion of the billet adjacent to the plug and the wires is sealed with a ceramic paste.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: April 18, 2017
    Assignee: Massachusetts Institure of Technology
    Inventors: Seungyong Hahn, Yukikazu Iwasa, Juan Bascunan, John Peter Voccio, Jiayin Ling, Jungbin Song, YoungJae Kim
  • Publication number: 20160240297
    Abstract: High-temperature superconducting (HTS) devices and methods are disclosed. An HTS cable subassembly has a rectangular shaped cross section. The subassembly includes a stack of tapes formed of a superconducting material, and a cable subassembly wrapper wrapped around the stack of tapes. The tapes in the stack are slidably arranged in a parallel fashion. A cable assembly is formed of a cable assembly wrapper formed of a second non-superconducting material disposed around an n x m array of cable subassemblies. A compound cable assembly is formed by joining two or more cable assemblies. A high temperature superconducting magnet is formed of a solenoidal magnet formed of a cable subassembly, a cable assembly, and/or a compound cable assembly.
    Type: Application
    Filed: February 12, 2015
    Publication date: August 18, 2016
    Inventors: Yukikazu Iwasa, Juan Bascuñán, Seungyong Hahn
  • Publication number: 20160240286
    Abstract: High-temperature superconducting (HTS) devices and methods are disclosed. An HTS cable subassembly has a rectangular shaped cross section. The subassembly includes a stack of tapes formed of a superconducting material, and a cable subassembly wrapper wrapped around the stack of tapes. The tapes in the stack are slidably arranged in a parallel fashion. A cable assembly is formed of a cable assembly wrapper formed of a second non-superconducting material disposed around an n×m array of cable subassemblies. Within a cable assembly, a first cable subassembly of the array of subassemblies is oriented substantially perpendicular to a second cable subassembly with regard to the plurality of tapes. A compound-cable assembly is formed by joining two or more cable assemblies. A high-temperature superconducting magnet is formed of a solenoidal magnet as well as dipole and quadrupole magnets wound of a cable subassembly, a cable assembly, and/or a compound cable assembly.
    Type: Application
    Filed: November 25, 2015
    Publication date: August 18, 2016
    Inventors: Yukikazu Iwasa, Juan Bascuñán, Seungyong Hahn
  • Publication number: 20160217893
    Abstract: The present invention is a superconducting partial insulation magnet and a method for providing the same. The magnet includes a coil with a non-insulated superconducting wire winding wound around a bobbin. The coil has a first wire layer, a second wire layer substantially surrounding the first layer, and a first layer of insulating material disposed between the first wire layer and the second wire layer. Each wire layer comprises a plurality of turns, and the first layer of insulating material substantially insulates the second wire layer from the first wire layer.
    Type: Application
    Filed: April 5, 2016
    Publication date: July 28, 2016
    Inventors: Seungyong Hahn, YoungJae Kim, John Peter Voccio, Juan Bascunan, Yukikazu lwasa
  • Patent number: 9324486
    Abstract: The present invention is a superconducting partial insulation magnet and a method for providing the same. The magnet includes a coil with a non-insulated superconducting wire winding wound around a bobbin. The coil has a first wire layer, a second wire layer substantially surrounding the first layer, and a first layer of insulating material disposed between the first wire layer and the second wire layer. Each wire layer comprises a plurality of turns, and the first layer of insulating material substantially insulates the second wire layer from the first wire layer.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: April 26, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Seungyong Hahn, YoungJae Kim, John Peter Voccio, Juan Bascunan, Yukikazu Iwasa