Patents by Inventor Seza Gulec

Seza Gulec has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050208476
    Abstract: An in vitro tissue angiogenesis and vasculogenesis system is disclosed that allows the outgrowth of microvessels from a three-dimensional tissue fragment implanted in a matrix. The matrix may, for example, be a fibrin- or collagen-based matrix fed by a growth medium, for example, a mixture of tissue culture medium, serum, or a layer of growth medium containing a defined mixture of growth factors. This system, which may be used with human or other mammalian or animal tissues, may be used in assaying tumor angiogenic potential, or in promoting angiogenesis in other tissues, e.g., promoting angiogenesis prior to transplantation of a tissue. The angiogenic potential of a tissue can be determined by measuring the growth of microvessels into the matrix. The three-dimensional structure of the tumor or other tissue is maintained in the matrix, including blood vessels.
    Type: Application
    Filed: May 16, 2005
    Publication date: September 22, 2005
    Inventors: Eugene Woltering, Seza Gulec
  • Patent number: 6893812
    Abstract: An in vitro tissue angiogenesis and vasculogenesis system is disclosed that allows the outgrowth of microvessels from a three-dimensional tissue fragment implanted in a matrix. The matrix may, for example, be a fibrin- or collagen-based matrix fed by a growth medium, for example, a mixture of tissue culture medium, serum, or a layer of growth medium containing a defined mixture of growth factors. This system, which may be used with human or other mammalian or animal tissues, may be used in assaying tumor angiogenic potential, or in promoting angiogenesis in other tissues, e.g., promoting angiogenesis prior to transplantation of a tissue. The angiogenic potential of a tissue can be determined by measuring the growth of microvessels into the matrix. The three-dimensional structure of the tumor or other tissue is maintained in the matrix, including blood vessels.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: May 17, 2005
    Assignee: Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventors: Eugene A. Woltering, Seza A. Gulec
  • Publication number: 20020177121
    Abstract: An in vitro tissue angiogenesis and vasculogenesis system is disclosed that allows the outgrowth of microvessels from a three-dimensional tissue fragment implanted in a matrix. The matrix may, for example, be a fibrin- or collagen-based matrix fed by a growth medium, for example, a mixture of tissue culture medium, serum, or a layer of growth medium containing a defined mixture of growth factors. This system, which may be used with human or other mammalian or animal tissues, may be used in assaying tumor angiogenic potential, or in promoting angiogenesis in other tissues, e.g., promoting angiogenesis prior to transplantation of a tissue. The angiogenic potential of a tissue can be determined by measuring the growth of microvessels into the matrix. The three-dimensional structure of the tumor or other tissue is maintained in the matrix, including blood vessels.
    Type: Application
    Filed: May 25, 2001
    Publication date: November 28, 2002
    Inventors: Eugene A. Woltering, Seza A. Gulec
  • Publication number: 20020150879
    Abstract: An in vitro tissue angiogenesis and vasculogenesis system is disclosed that allows the outgrowth of microvessels from a three-dimensional tissue fragment implanted in a matrix. The matrix may, for example, be a fibrin- or collagen-based matrix fed by a growth medium, for example, a mixture of tissue culture medium, serum, or a layer of growth medium containing a defined mixture of growth factors. This system, which may be used with human or other mammalian or animal tissues, may be used in assaying tumor angiogenic potential, or in promoting angiogenesis in other tissues, e.g., promoting angiogenesis prior to transplantation of a tissue. The angiogenic potential of a tissue can be determined by measuring the growth of microvessels into the matrix. The three-dimensional structure of the tumor or other tissue is maintained in the matrix, including blood vessels.
    Type: Application
    Filed: June 17, 2002
    Publication date: October 17, 2002
    Inventors: Eugene A. Woltering, Seza A. Gulec