Patents by Inventor Shabbir Husain

Shabbir Husain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11319792
    Abstract: Disclosed are methods and systems for reducing elemental sulfur production in a gas production plant that includes receiving produced fluids high in hydrogen sulfide, removing hydrogen sulfide and converting hydrogen sulfide to elemental sulfur in a Claus unit. An acid gas stream is diverted from a feed line to the Claus unit in the gas processing plant and directed to a multistage acid gas compressor. An elemental sulfur production rate is reduced without reducing a production rate of the produced fluids. The compressed acid gas stream can be injected into a subterranean formation. In some embodiments, the gas production plant is integrated with an oil processing and gas injection plant.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: May 3, 2022
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Daniel Chinn, Brent A. Hetrick, Nitesh Bhuwania, Shabbir Husain, Sam J. Mishael
  • Publication number: 20210153774
    Abstract: The present disclosure relates to a throwaway device to check and measure respiratory flow rates. The device 100 incorporates a first deflector 104, a blade 108 and a second deflector 106 enclosed inside a housing 102. The first deflector 104 configured at a front end of the housing 102 to facilitate inflow of air inside the housing 102. The second deflector 106 is configured at the rear end of the housing 102 to facilitate outflow of air. The blade 108 is having two conical ends 110 at two opposite edges. The blade 108 positioned between the first deflector 104 and the second deflector 106 which is configured to rotate about a rotational axis A-A?. A mouth piece 112 is removable attached at the front end of the housing 102. The blade, housing and the two deflectors are made of different plastic materials using multiple sessions of injection molding process.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 27, 2021
    Applicant: Aerobit Labs Pvt. Ltd.
    Inventor: Shabbir Husain Moiyed-Tailor
  • Patent number: 10905996
    Abstract: Disclosed are systems and methods for producing oil and gas while removing hydrogen sulfide from fluids produced from oil and gas reservoirs. Hydrogen sulfide-selective membranes are used to remove hydrogen sulfide from bottlenecked plant process steps including hydrogen sulfide removal. In some embodiments of the present disclosure, plant processing efficiency is improved for processing of high temperature associated gas streams by using membranes while integrating heat from other existing process streams. In other embodiments of the present disclosure, plant processing efficiency is improved for processing of high temperature associated gas streams by using high temperature tolerant polymer membranes. Oil and/or gas production is increased.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: February 2, 2021
    Assignee: Chevron U.S.A. Inc.
    Inventors: Nitesh Bhuwania, Shabbir Husain, Daniel Chinn, Ronald P. MacDonald, Tapan K. Das
  • Patent number: 10843129
    Abstract: Disclosed are systems and methods for processing gas produced from oil and gas reservoirs while removing mercaptans from the gas. Mercaptan-selective membranes are used to debottleneck known systems and methods by removing mercaptans from bottlenecked plant process steps including LPG fractionation and mercaptan sweetening. Hydrogen sulfide can be simultaneously removed by the membranes. Production of on specification LPG and sales gases can be increased.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: November 24, 2020
    Assignee: Chevron U.S.A. Inc.
    Inventors: Nitesh Bhuwania, Shabbir Husain, Daniel Chinn, Ronald P. MacDonald, Tapan K. Das
  • Publication number: 20190383128
    Abstract: Disclosed are methods and systems for reducing elemental sulfur production in a gas production plant that includes receiving produced fluids high in hydrogen sulfide, removing hydrogen sulfide and converting hydrogen sulfide to elemental sulfur in a Claus unit. An acid gas stream is diverted from a feed line to the Claus unit in the gas processing plant and directed to a multistage acid gas compressor. An elemental sulfur production rate is reduced without reducing a production rate of the produced fluids. The compressed acid gas stream can be injected into a subterranean formation. In some embodiments, the gas production plant is integrated with an oil processing and gas injection plant.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 19, 2019
    Inventors: Daniel CHINN, Brent A. HETRICK, Nitesh BHUWANIA, Shabbir HUSAIN, Sam J. MISHAEL
  • Patent number: 10446828
    Abstract: Various embodiments are described herein for an electrode assembly for a battery and a method of making the electrode assembly. The electrode assembly comprises an active material layer having a recess formed therein at an outer surface of the active material layer, the recess extending from a side facet of the active material layer toward an interior portion of the active material layer; a current collector layer supported on and in electrical contact with the outer surface of the active material layer; and a tab element supported partially within the recess and in electrical contact with at least one of the active material layer and the current collector layer, the tab element being adapted to provide an electrical connection for the electrode assembly.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: October 15, 2019
    Assignee: BlackBerry Limited
    Inventors: David Gerard Rich, Taha Shabbir Husain Sutarwala
  • Patent number: 10391444
    Abstract: Disclosed are systems and methods for producing oil and gas while removing hydrogen sulfide from fluids produced from oil and gas reservoirs and injecting a sour gas stream containing the hydrogen sulfide into an underground formation. Hydrogen sulfide-selective membranes are used to debottleneck known systems and methods by removing hydrogen sulfide from bottlenecked plant process steps including sour gas compression, hydrogen sulfide removal and sour gas injection. Pressure ratio across the membranes can also be manipulated to provide further debottlenecking. Gas-gas eductors are also disclosed for use in leveraging relatively high-pressure streams to boost the pressure of low pressure streams. Oil production is thus increased.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: August 27, 2019
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Daniel Chinn, Nitesh Bhuwania, Shabbir Husain, Ronald P. MacDonald, Tapan K. Das
  • Patent number: 10363518
    Abstract: Disclosed are systems and methods for increasing oil production in an integrated oil and gas production plant including hydrogen sulfide removal and sour-gas injection into an underground formation. Hydrogen sulfide-selective membranes are used to debottleneck known systems and methods by removing hydrogen sulfide from bottlenecked plant process steps including sour gas compression, hydrogen sulfide removal and sour gas injection. A method of retrofitting an integrated plant includes adding a hydrogen sulfide-selective membrane upstream of an amine unit to remove hydrogen sulfide from an associated gas stream and form a permeate stream enriched in hydrogen sulfide and a retentate stream depleted in hydrogen sulfide and enriched in hydrocarbon gases. Less hydrogen sulfide is sent to the amine unit and oil production is higher than in the integrated plant without the hydrogen sulfide-selective membrane.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: July 30, 2019
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Daniel Chinn, Nitesh Bhuwania, Shabbir Husain, Ronald P. MacDonald, Tapan K. Das
  • Patent number: 10363517
    Abstract: Disclosed are systems and methods for producing oil and gas in a plant while removing hydrogen sulfide and water from fluids produced from oil and gas reservoirs and injecting a sour gas stream containing the hydrogen sulfide into an underground formation. Water-selective membranes are used to debottleneck known systems and methods by removing water from bottlenecked sections of the plant including pretreatment of a sour gas feed to one or more gas processing plants. In other aspects, water-selective membranes are used to debottleneck the pretreatment of an acid gas feed to a Claus unit to convert hydrogen sulfide to sulfur in a gas processing plant. The water-selective membranes pretreat the acid gas feed.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: July 30, 2019
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Nitesh Bhuwania, Shabbir Husain, Daniel Chinn, Ronald P. MacDonald, Tapan K. Das
  • Publication number: 20190105599
    Abstract: Disclosed are systems and methods for producing oil and gas in a plant while removing hydrogen sulfide and water from fluids produced from oil and gas reservoirs and injecting a sour gas stream containing the hydrogen sulfide into an underground formation. Water-selective membranes are used to debottleneck known systems and methods by removing water from bottlenecked sections of the plant including pretreatment of a sour gas feed to one or more gas processing plants. In other aspects, water-selective membranes are used to debottleneck the pretreatment of an acid gas feed to a Claus unit to convert hydrogen sulfide to sulfur in a gas processing plant. The water-selective membranes pretreat the acid gas feed.
    Type: Application
    Filed: May 4, 2018
    Publication date: April 11, 2019
    Inventors: Nitesh Bhuwania, Shabbir Husain, Daniel Chinn, Ronald P. MacDonald, Tapan K. Das
  • Publication number: 20190105603
    Abstract: Disclosed are systems and methods for processing gas produced from oil and gas reservoirs while removing mercaptans from the gas. Mercaptan-selective membranes are used to debottleneck known systems and methods by removing mercaptans from bottlenecked plant process steps including LPG fractionation and mercaptan sweetening. Hydrogen sulfide can be simultaneously removed by the membranes. Production of on specification LPG and sales gases can be increased.
    Type: Application
    Filed: May 7, 2018
    Publication date: April 11, 2019
    Inventors: Nitesh Bhuwania, Shabbir Husain, Daniel Chinn, Ronald P. MacDonald, Tapan K. Das
  • Publication number: 20190105601
    Abstract: Disclosed are systems and methods for producing oil and gas while removing hydrogen sulfide from fluids produced from oil and gas reservoirs and injecting a sour gas stream containing the hydrogen sulfide into an underground formation. Hydrogen sulfide-selective membranes are used to debottleneck known systems and methods by removing hydrogen sulfide from bottlenecked plant process steps including sour gas compression, hydrogen sulfide removal and sour gas injection. Pressure ratio across the membranes can also be manipulated to provide further debottlenecking. Gas-gas eductors are also disclosed for use in leveraging relatively high-pressure streams to boost the pressure of low pressure streams. Oil production is thus increased.
    Type: Application
    Filed: May 4, 2018
    Publication date: April 11, 2019
    Inventors: Daniel Chinn, Nitesh Bhuwania, Shabbir Husain, Ronald P. MacDonald, Tapan K. Das
  • Publication number: 20190105600
    Abstract: Disclosed are systems and methods for increasing oil production in an integrated oil and gas production plant including hydrogen sulfide removal and sour-gas injection into an underground formation. Hydrogen sulfide-selective membranes are used to debottleneck known systems and methods by removing hydrogen sulfide from bottlenecked plant process steps including sour gas compression, hydrogen sulfide removal and sour gas injection. A method of retrofitting an integrated plant includes adding a hydrogen sulfide-selective membrane upstream of an amine unit to remove hydrogen sulfide from an associated gas stream and form a permeate stream enriched in hydrogen sulfide and a retentate stream depleted in hydrogen sulfide and enriched in hydrocarbon gases. Less hydrogen sulfide is sent to the amine unit and oil production is higher than in the integrated plant without the hydrogen sulfide-selective membrane.
    Type: Application
    Filed: May 4, 2018
    Publication date: April 11, 2019
    Inventors: Daniel Chinn, Nitesh Bhuwania, Shabbir Husain, Ronald P. MacDonald, Tapan K. Das
  • Publication number: 20190105602
    Abstract: Disclosed are systems and methods for producing oil and gas while removing hydrogen sulfide from fluids produced from oil and gas reservoirs. Hydrogen sulfide-selective membranes are used to remove hydrogen sulfide from bottlenecked plant process steps including hydrogen sulfide removal. In some embodiments of the present disclosure, plant processing efficiency is improved for processing of high temperature associated gas streams by using membranes while integrating heat from other existing process streams. In other embodiments of the present disclosure, plant processing efficiency is improved for processing of high temperature associated gas streams by using high temperature tolerant polymer membranes. Oil and/or gas production is increased.
    Type: Application
    Filed: May 7, 2018
    Publication date: April 11, 2019
    Inventors: Nitesh Bhuwania, Shabbir Husain, Daniel Chinn, Ronald P. MacDonald, Tapan K. Das
  • Patent number: 10179879
    Abstract: A method is provided for recovering mercury from a crude oil into an alkaline ammonium sulfide contacting solution. Soluble mercury complexes in the contacting solution are converted to particulate mercury. The particulate mercury can be recovered by filtering, and the ammonium sulfide in the contacting solution recycled to the aqueous contacting solution.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: January 15, 2019
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis John O'Rear, Russell Evan Cooper, Shabbir Husain
  • Publication number: 20180171237
    Abstract: A process for reducing total acid number (TAN), comprising: contacting, without hydrogen addition, a liquid hydrocarbon having a high initial TAN with a ternary catalyst comprising titanium-oxide, a metal promoter, and a porous support; wherein the contacting occurs over a short time or at a defined LHSV, and at a low contacting temperature, and wherein the contacting reduces the initial TAN by at least 20%. Also, a new ternary catalyst that reduces the TAN, wherein the ternary catalyst has a molar ratio of titanium to metal from the metal promoter that is greater than 3:1.
    Type: Application
    Filed: December 19, 2016
    Publication date: June 21, 2018
    Inventors: Zhen Zhou, Lin Li, Shabbir Husain
  • Patent number: 9904755
    Abstract: In a method for legalizing a multi-patterning integrated circuit layout including a plurality of islands, a set of multi-patterning constraints is generated on the basis of multi-patterning conflicts identified between the plurality of islands. Based on general design rule constraints and the multi-patterning constraints a combined set of layout constraints is generated. Feasibility of the set of layout constraints is checked, which then is provided to a Linear Program solver for generating an output circuit layout.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: February 27, 2018
    Assignee: Synopsys, Inc.
    Inventors: Sambuddha Bhattacharya, Subramanian Rajagopalan, Shabbir Husain Batterywala
  • Patent number: 9898567
    Abstract: A method (and system) of automatically legalizing a circuit layout with layout objects in a presence of a plurality of non-uniform grids is disclosed. The method comprises generating a set of layout constraints comprising design rule constraints and gridding requirements based on the plurality of non-uniform grids. In addition, the method comprises processing the set of layout constraints to a feasible form using Boolean variables by determining infeasibility of the set of layout constraints, identifying infeasible layout constraints from the set of layout constraints, and resolving the infeasibility by a constraint relaxation process. Additionally, the method comprises generating an output circuit layout, for display to a user, by solving the set of layout constraints in the feasible form with standard linear program solvers.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: February 20, 2018
    Assignee: Synopsys, Inc.
    Inventors: Nitin Dileep Salodkar, Subramanian Rajagopalan, Sambuddha Bhattacharya, Shabbir Husain Batterywala
  • Patent number: 9581651
    Abstract: In at least one embodiment, a power management module measures an electromagnetic radiation spectrum or a voltage response of a battery module. The measured electromagnetic radiation spectrum or voltage response of the battery is compared to a plurality of reference electromagnetic radiation spectrums or voltage responses, respectively, which may be determined for authentic batteries, for example. A relative condition of the battery, such as an age or state of health, may be estimated based on the measured electromagnetic radiation spectrum or voltage response of the battery module, and stored in a memory store. The rate of change of the relative condition of the battery over a period of time may be determined to identify potential defects in the battery.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: February 28, 2017
    Assignee: BlackBerry Limited
    Inventors: David Gerard Rich, Taha Shabbir Husain Sutarwala, Surajit Sengupta
  • Patent number: 9499749
    Abstract: A crude oil which contains at least 0.1 wt % unstable sulfur compounds is treated in a reaction zone at low temperature to convert at least 50 wt % of the unstable sulfur compounds contained therein. The reaction and removal of sulfur from the crude may be facilitated by contacting the crude oil with a catalytic material in the presence of a stripping fluid.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: November 22, 2016
    Assignee: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Zhen Zhou, Lin Li, Alice He, Daniel Chinn, Graham Forder, Lyman Young, Shabbir Husain, William Schinski