Patents by Inventor Shabnam Virji

Shabnam Virji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9446956
    Abstract: A method of purifying a nanodiamond powder includes preparing the nanodiamond powder, heating the nanodiamond powder at between 450° C. and 470° C. in an atmosphere including oxygen, performing a hydrochloric acid treatment on the heated nanodiamond powder, and performing a hydrofluoric acid treatment on the nanodiamond powder obtained after performing the hydrochloric acid treatment.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: September 20, 2016
    Assignees: The Arizona Board of Regents on Behalf of the University of Arizona, Canon Kabushiki Kaisha
    Inventors: Palash Gangopadhyay, Robert A. Norwood, Alexander Ashton Miles, Jun Kato, Shabnam Virji, Mamoru Miyawaki
  • Patent number: 9034266
    Abstract: A method for sensing hydrogen includes the use of a transduction device with a sensing layer, and means for measuring a mass and/or conductivity change caused by an interaction of a gas with the sensing layer to provide a measure of an amount of hydrogen in the gas. The sensing layer includes polyaniline nanofiber material.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: May 19, 2015
    Assignees: The Aerospace Corporation, The Regents of the University of California
    Inventors: Shabnam Virji, Richard B. Kaner, Bruce H. Weiller
  • Publication number: 20150125379
    Abstract: A method of purifying a nanodiamond powder includes preparing the nanodiamond powder, heating the nanodiamond powder at between 450° C. and 470° C. in an atmosphere including oxygen, performing a hydrochloric acid treatment on the heated nanodiamond powder, and performing a hydrofluoric acid treatment on the nanodiamond powder obtained after performing the hydrochloric acid treatment.
    Type: Application
    Filed: January 9, 2015
    Publication date: May 7, 2015
    Inventors: Palash Gangopadhyay, Robert A. Norwood, Alexander Ashton Miles, Jun Kato, Shabnam Virji-Khalfan, Mamoru Miyawaki
  • Patent number: 8961880
    Abstract: A sensor for detecting phosgene includes a pair of electrodes separated by an electrode gap, and a layer of conducting polymer material positioned over and making electrical contact with the pair of electrodes, the layer of conducting polymer material being modified with an amine such that the electrical resistance of the conducting polymer material measured across the electrodes is responsive to changes in an amount of phosgene to which the conducting polymer material is exposed.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: February 24, 2015
    Assignees: The Aerospace Corporation, The Regents of the University of California
    Inventors: Shabnam Virji, Robert Kojima, Richard B. Kaner, Bruce H. Weiller
  • Patent number: 8940267
    Abstract: A method of purifying a nanodiamond powder includes preparing the nanodiamond powder, heating the nanodiamond powder at between 450° C. and 470° C. in an atmosphere including oxygen, performing a hydrochloric acid treatment on the heated nanodiamond powder, and performing a hydrofluoric acid treatment on the nanodiamond powder obtained after performing the hydrochloric acid treatment.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: January 27, 2015
    Assignees: The Arizona Board of Regents on Behalf of the University of Arizona, Canon Kabushiki Kaisha
    Inventors: Robert A. Norwood, Palash Gangopadhyay, Alexander Ashton Miles, Jun Kato, Shabnam Virji-Khalfan, Mamoru Miyawaki
  • Publication number: 20140004031
    Abstract: A method of purifying a nanodiamond powder includes preparing the nanodiamond powder, heating the nanodiamond powder at between 450° C. and 470° C. in an atmosphere including oxygen, performing a hydrochloric acid treatment on the heated nanodiamond powder, and performing a hydrofluoric acid treatment on the nanodiamond powder obtained after performing the hydrochloric acid treatment.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 2, 2014
    Applicants: Arizona Board of Regents on Behalf of The University of Arizona, CANON KABUSHIKI KAISHA
    Inventors: Robert A. Norwood, Palash Gangopadhyay, Alexander Ashton Miles, Jun Kato, Shabnam Virji-Khalfan, Mamoru Miyawaki
  • Publication number: 20110300637
    Abstract: A method for sensing hydrogen includes the use of a transduction device with a sensing layer, and means for measuring a mass and/or conductivity change caused by an interaction of a gas with the sensing layer to provide a measure of an amount of hydrogen in the gas. The sensing layer includes polyaniline nanofiber material.
    Type: Application
    Filed: August 2, 2011
    Publication date: December 8, 2011
    Inventors: Shabnam Virji, Richard B. Kaner, Bruce H. Weiller
  • Publication number: 20110287551
    Abstract: A sensor made from a metal salt film, formed on a set of monitoring electrodes, by evaporation of a metal salt aqueous solution disposed on the electrodes, is used for detecting a weak acid. Low concentrations of the weak acid, such as ten ppm, are indicated as the conductivity of the film changes by several orders of magnitude, as a result of reaction of the weak acid with the metal salt, as the metal salt converts to a metal reaction product upon exposure to the weak acid.
    Type: Application
    Filed: July 27, 2011
    Publication date: November 24, 2011
    Inventors: Bruce H. Weiller, Richard B. Kaner, Shabnam Virji
  • Patent number: 8012326
    Abstract: Polymer nanofibers, such as polyaniline nanofibers, with uniform diameters less than 500 nm can be made in bulk quantities through a facile aqueous and organic interfacial polymerization method at ambient conditions. The nanofibers have lengths varying from 500 nm to 10 ?m and form interconnected networks in a thin film. Thin film nanofiber sensors can be made of the polyaniline nanofibers having superior performance in both sensitivity and time response to a variety of gas vapors including, acids, bases, redox active vapors, alcohols and volatile organic chemicals.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: September 6, 2011
    Assignees: The Regeants Of The Universtiy Of California, The Aerospace Corporation
    Inventors: Bruce H. Weiller, Shabnam Virji, Richard B. Kaner, Jiaxing Huang
  • Publication number: 20100059375
    Abstract: A hydrogen sulfide sensor is made from a metal acetate film, such as a thin film of copper acetate, formed on a set of monitoring electrodes, by evaporation of a metal acetate aqueous solution disposed on the electrodes, for detecting a weak gas, such as hydrogen sulfide, carried in a gas carrier, such as a nitrogen carrier, for detecting low concentration of the weak gas, such as ten ppm, when the conductivity of the film changes by several orders of magnitude, that produces a metal sulfide, such as copper sulfide, that is a good electrical conductor at room temperature, for example, as the metal acetate is converted directly to a metal sulfide upon exposure to hydrogen sulfide.
    Type: Application
    Filed: November 8, 2006
    Publication date: March 11, 2010
    Inventors: Bruce H. Weiller, Richard B. Kaner, Shabnam Virji
  • Publication number: 20100006434
    Abstract: A sensor for detecting phosgene includes a pair of electrodes separated by an electrode gap, and a layer of conducting polymer material positioned over and making electrical contact with the pair of electrodes, the layer of conducting polymer material being modified with an amine such that the electrical resistance of the conducting polymer material measured across the electrodes is responsive to changes in an amount of phosgene to which the conducting polymer material is exposed.
    Type: Application
    Filed: July 14, 2008
    Publication date: January 14, 2010
    Inventors: Shabnam Virji, Robert Kojima, Richard B. Kaner, Bruce H. Weiller
  • Publication number: 20100005858
    Abstract: A sensor for detecting arsine includes a pair of electrodes separated by an electrode gap, and a layer of conducting polymer material positioned over and making electrical contact with the pair of electrodes, the layer of conducting polymer material being modified with a metal salt such that the electrical resistance of the conducting polymer material measured across the electrodes is responsive to changes in an amount of arsine to which the conducting polymer material is exposed.
    Type: Application
    Filed: July 14, 2008
    Publication date: January 14, 2010
    Inventors: Shabnam Virji, Robert Kojima, Richard B. Kaner, Bruce H. Weiller
  • Publication number: 20080101994
    Abstract: An apparatus for sensing hydrogen includes a transduction device with a sensing layer, and means for measuring a mass and/or conductivity change caused by an interaction of a gas with the sensing layer to provide a measure of an amount of hydrogen in the gas. The sensing layer includes polyaniline nanofiber material.
    Type: Application
    Filed: October 28, 2006
    Publication date: May 1, 2008
    Inventors: Shabnam Virji, Richard B. Kaner, Bruce H. Weiller
  • Publication number: 20070187239
    Abstract: Polymer nanofibers, such as polyaniline nanofibers, with uniform diameters less than 500 nm can be made in bulk quantities through a facile aqueous and organic interfacial polymerization method at ambient conditions. The nanofibers have lengths varying from 500 nm to 10 ?m and form interconnected networks in a thin film. Thin film nanofiber sensors can be made of the polyaniline nanofibers having superior performance in both sensitivity and time response to a variety of gas vapors including, acids, bases, redox active vapors, alcohols and volatile organic chemicals.
    Type: Application
    Filed: February 1, 2007
    Publication date: August 16, 2007
    Inventors: Bruce Weiller, Shabnam Virji, Richard Kaner, Jiaxing Huang
  • Patent number: 7226530
    Abstract: Polymer nanofibers, such as polyaniline nanofibers, with uniform diameters less than 500 nm can be made in bulk quantities through a facile aqueous and organic interfacial polymerization method at ambient conditions. The nanofibers have lengths varying from 500 nm to 10 ?m and form interconnected networks in a thin film. Thin film nanofiber sensors can be made of the polyaniline nanofibers having superior performance in both sensitivity and time response to a variety of gas vapors including, acids, bases, redox active vapors, alcohols and volatile organic chemicals.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: June 5, 2007
    Assignees: The Aerospace Corporation, Regents of the University of California
    Inventors: Bruce H. Weiller, Shabnam Virji, Richard B. Kaner, Jiaxing Huang
  • Patent number: 7144949
    Abstract: Polymer nanofibers, such as polyaniline nanofibers, with uniform diameters less than 500 nm can be made in bulk quantities through a facile aqueous and organic interfacial polymerization method at ambient conditions. The nanofibers have lengths varying from 500 nm to 10 ?m and form interconnected networks in a thin film. Thin film nanofiber sensors can be made of the polyaniline nanofibers having superior performance in both sensitivity and time response to a variety of gas vapors including, acids, bases, redox active vapors, alcohols and volatile organic chemicals.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: December 5, 2006
    Assignees: The Aerospace Corporation, Regents of the University of California
    Inventors: Richard B. Kaner, Jiaxing Huang, Bruce H. Weiller, Shabnam Virji
  • Publication number: 20050126909
    Abstract: Polymer nanofibers, such as polyaniline nanofibers, with uniform diameters less than 500 nm can be made in bulk quantities through a facile aqueous and organic interfacial polymerization method at ambient conditions. The nanofibers have lengths varying from 500 nm to 10 ?m and form interconnected networks in a thin film. Thin film nanofiber sensors can be made of the polyaniline nanofibers having superior performance in both sensitivity and time response to a variety of gas vapors including, acids, bases, redox active vapors, alcohols and volatile organic chemicals.
    Type: Application
    Filed: December 11, 2003
    Publication date: June 16, 2005
    Inventors: Bruce Weiller, Shabnam Virji, Richard Kaner, Jiaxing Huang
  • Publication number: 20050131139
    Abstract: Polymer nanofibers, such as polyaniline nanofibers, with uniform diameters less than 500 nm can be made in bulk quantities through a facile aqueous and organic interfacial polymerization method at ambient conditions. The nanofibers have lengths varying from 500 nm to 10 ?m and form interconnected networks in a thin film. Thin film nanofiber sensors can be made of the polyaniline nanofibers having superior performance in both sensitivity and time response to a variety of gas vapors including, acids, bases, redox active vapors, alcohols and volatile organic chemicals.
    Type: Application
    Filed: December 11, 2003
    Publication date: June 16, 2005
    Inventors: Richard Kaner, Jiaxing Huang, Bruce Weiller, Shabnam Virji