Patents by Inventor SHAHAB ARDALAN

SHAHAB ARDALAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240061181
    Abstract: A package assembly includes a silicon photonics chip having an optical waveguide exposed at a first side of the chip and an optical fiber coupling region formed along the first side of the chip. The package assembly includes a mold compound structure formed to extend around second, third, and fourth sides of the chip. The mold compound structure has a vertical thickness substantially equal to a vertical thickness of the chip. The package assembly includes a redistribution layer formed over the chip and over a portion of the mold compound structure. The redistribution layer includes electrically conductive interconnect structures to provide fanout of electrical contacts on the chip to corresponding electrical contacts on the redistribution layer. The redistribution layer is formed to leave the optical fiber coupling region exposed. An optical fiber is connected to the optical fiber coupling region in optical alignment with the optical waveguide within the chip.
    Type: Application
    Filed: October 31, 2023
    Publication date: February 22, 2024
    Inventors: Shahab Ardalan, Michael Davenport, Roy Edward Meade
  • Patent number: 11867944
    Abstract: An intact semiconductor wafer (wafer) includes a plurality of die. Each die has a top layer including routings of conductive interconnect structures electrically isolated from each other by intervening dielectric material. A top surface of the top layer corresponds to a top surface of the wafer. Below the top layer, each die has a device layer including optical devices and electronic devices. Each die has a cladding layer below the device layer and on a substrate of the wafer. Each die includes a photonic test port within the device layer. For each die, a light transfer region is formed within the intact wafer to extend through the top layer to the photonic test port within the device layer. The light transfer region provides a window for transmission of light into and out of the photonic test port from and to a location on the top surface of the wafer.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: January 9, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Roy Edward Meade, Chen Sun, Shahab Ardalan, John Fini, Forrest Sedgwick
  • Patent number: 11822128
    Abstract: A package assembly includes a silicon photonics chip having an optical waveguide exposed at a first side of the chip and an optical fiber coupling region formed along the first side of the chip. The package assembly includes a mold compound structure formed to extend around second, third, and fourth sides of the chip. The mold compound structure has a vertical thickness substantially equal to a vertical thickness of the chip. The package assembly includes a redistribution layer formed over the chip and over a portion of the mold compound structure. The redistribution layer includes electrically conductive interconnect structures to provide fanout of electrical contacts on the chip to corresponding electrical contacts on the redistribution layer. The redistribution layer is formed to leave the optical fiber coupling region exposed. An optical fiber is connected to the optical fiber coupling region in optical alignment with the optical waveguide within the chip.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: November 21, 2023
    Assignee: Ayar Labs, Inc.
    Inventors: Shahab Ardalan, Michael Davenport, Roy Edward Meade
  • Publication number: 20230224047
    Abstract: An optical power supply includes a plurality of lasers in a laser array. Each of the plurality of lasers is configured to generate a separate beam of continuous wave laser light. The optical power supply includes a temperature sensor that acquires a temperature associated with the laser array. The optical power supply includes a digital controller that receives notification of the temperature from the temperature senor. The optical power supply includes an optical power adjuster controlled by the digital controller. The optical power adjuster adjusts an optical power level of one or more beams of continuous wave laser light generated by the plurality of lasers to produce an optical power encoding that conveys information about the temperature associated with the laser array as acquired by the temperature sensor. An electro-optic chip receives the beams of continuous wave laser light from the optical power supply and decodes the optical power encoding.
    Type: Application
    Filed: January 10, 2023
    Publication date: July 13, 2023
    Inventors: Matthew Sysak, Chen Sun, Shahab Ardalan, Daniel Jeong, Songtao Liu
  • Publication number: 20220214497
    Abstract: An intact semiconductor wafer (wafer) includes a plurality of die. Each die has a top layer including routings of conductive interconnect structures electrically isolated from each other by intervening dielectric material. A top surface of the top layer corresponds to a top surface of the wafer. Below the top layer, each die has a device layer including optical devices and electronic devices. Each die has a cladding layer below the device layer and on a substrate of the wafer. Each die includes a photonic test port within the device layer. For each die, a light transfer region is formed within the intact wafer to extend through the top layer to the photonic test port within the device layer. The light transfer region provides a window for transmission of light into and out of the photonic test port from and to a location on the top surface of the wafer.
    Type: Application
    Filed: March 22, 2022
    Publication date: July 7, 2022
    Inventors: Roy Edward Meade, Chen Sun, Shahab Ardalan, John Fini, Forrest Sedgwick
  • Patent number: 11323181
    Abstract: A bidirectional transceiver includes a transmitter and a receiver that respectively transmits a local signal to and receives remote signal from a common bidirectional communication channel, thus the bidirectional channel signal is the superimposition of the local and remote signals. The bidirectional transceiver also includes a transmit canceller that substantially removes the local transmitted signal from the superimposed signals on the bidirectional channel before the local receiver. The remote signal is transmitted by a remote transceiver over the bidirectional channel. A sampling phase is set, based on timing information in the received remote signal, and the received signal is sampled. Timing relation of transitions in the local transmit signal relative to the receiver sampling phase is set such that transmit signal cancellation is optimum at receiver sampling phase, by changing the delay applied to the local transmit signal.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: May 3, 2022
    Assignee: Radin Global
    Inventor: Shahab Ardalan
  • Publication number: 20220107463
    Abstract: A package assembly includes a silicon photonics chip having an optical waveguide exposed at a first side of the chip and an optical fiber coupling region formed along the first side of the chip. The package assembly includes a mold compound structure formed to extend around second, third, and fourth sides of the chip. The mold compound structure has a vertical thickness substantially equal to a vertical thickness of the chip. The package assembly includes a redistribution layer formed over the chip and over a portion of the mold compound structure. The redistribution layer includes electrically conductive interconnect structures to provide fanout of electrical contacts on the chip to corresponding electrical contacts on the redistribution layer. The redistribution layer is formed to leave the optical fiber coupling region exposed. An optical fiber is connected to the optical fiber coupling region in optical alignment with the optical waveguide within the chip.
    Type: Application
    Filed: November 1, 2021
    Publication date: April 7, 2022
    Inventors: Shahab Ardalan, Michael Davenport, Roy Edward Meade
  • Patent number: 11280959
    Abstract: An intact semiconductor wafer (wafer) includes a plurality of die. Each die has a top layer including routings of conductive interconnect structures electrically isolated from each other by intervening dielectric material. A top surface of the top layer corresponds to a top surface of the wafer. Below the top layer, each die has a device layer including optical devices and electronic devices. Each die has a cladding layer below the device layer and on a substrate of the wafer. Each die includes a photonic test port within the device layer. For each die, a light transfer region is formed within the intact wafer to extend through the top layer to the photonic test port within the device layer. The light transfer region provides a window for transmission of light into and out of the photonic test port from and to a location on the top surface of the wafer.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: March 22, 2022
    Assignee: Ayar Labs, Inc.
    Inventors: Roy Edward Meade, Chen Sun, Shahab Ardalan, John Fini, Forrest Sedgwick
  • Patent number: 11163120
    Abstract: A package assembly includes a silicon photonics chip having an optical waveguide exposed at a first side of the chip and an optical fiber coupling region formed along the first side of the chip. The package assembly includes a mold compound structure formed to extend around second, third, and fourth sides of the chip. The mold compound structure has a vertical thickness substantially equal to a vertical thickness of the chip. The package assembly includes a redistribution layer formed over the chip and over a portion of the mold compound structure. The redistribution layer includes electrically conductive interconnect structures to provide fanout of electrical contacts on the chip to corresponding electrical contacts on the redistribution layer. The redistribution layer is formed to leave the optical fiber coupling region exposed. An optical fiber is connected to the optical fiber coupling region in optical alignment with the optical waveguide within the chip.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: November 2, 2021
    Assignee: Ayar Labs, Inc.
    Inventors: Shahab Ardalan, Michael Davenport, Roy Edward Meade
  • Publication number: 20200341191
    Abstract: An intact semiconductor wafer (wafer) includes a plurality of die. Each die has a top layer including routings of conductive interconnect structures electrically isolated from each other by intervening dielectric material. A top surface of the top layer corresponds to a top surface of the wafer. Below the top layer, each die has a device layer including optical devices and electronic devices. Each die has a cladding layer below the device layer and on a substrate of the wafer. Each die includes a photonic test port within the device layer. For each die, a light transfer region is formed within the intact wafer to extend through the top layer to the photonic test port within the device layer. The light transfer region provides a window for transmission of light into and out of the photonic test port from and to a location on the top surface of the wafer.
    Type: Application
    Filed: April 23, 2020
    Publication date: October 29, 2020
    Inventors: Roy Edward Meade, Chen Sun, Shahab Ardalan, John Fini, Forrest Sedgwick
  • Publication number: 20200158959
    Abstract: A package assembly includes a silicon photonics chip having an optical waveguide exposed at a first side of the chip and an optical fiber coupling region formed along the first side of the chip. The package assembly includes a mold compound structure formed to extend around second, third, and fourth sides of the chip. The mold compound structure has a vertical thickness substantially equal to a vertical thickness of the chip. The package assembly includes a redistribution layer formed over the chip and over a portion of the mold compound structure. The redistribution layer includes electrically conductive interconnect structures to provide fanout of electrical contacts on the chip to corresponding electrical contacts on the redistribution layer. The redistribution layer is formed to leave the optical fiber coupling region exposed. An optical fiber is connected to the optical fiber coupling region in optical alignment with the optical waveguide within the chip.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 21, 2020
    Inventors: Shahab Ardalan, Michael Davenport, Roy Edward Meade
  • Publication number: 20190326994
    Abstract: A bidirectional transceiver includes a transmitter and a receiver that respectively transmits a local signal to and receives remote signal from a common bidirectional communication channel, thus the bidirectional channel signal is the superimposition of the local and remote signals. The bidirectional transceiver also includes a transmit canceller that substantially removes the local transmitted signal from the superimposed signals on the bidirectional channel before the local receiver. The remote signal is transmitted by a remote transceiver over the bidirectional channel. A sampling phase is set, based on timing information in the received remote signal, and the received signal is sampled. Timing relation of transitions in the local transmit signal relative to the receiver sampling phase is set such that transmit signal cancellation is optimum at receiver sampling phase, by changing the delay applied to the local transmit signal.
    Type: Application
    Filed: July 2, 2019
    Publication date: October 24, 2019
    Inventor: Shahab Ardalan
  • Patent number: 10361786
    Abstract: A bidirectional transceiver includes a transmitter and a receiver that respectively transmits a local signal to and receives remote signal from a common bidirectional communication channel, thus the bidirectional channel signal is the superimposition of the local and remote signals. The bidirectional transceiver also includes a transmit canceller that substantially removes the local transmitted signal from the superimposed signals on the bidirectional channel before the local receiver. The remote signal is transmitted by a remote transceiver over the bidirectional channel. A sampling phase is set, based on timing information in the received remote signal, and the received signal is sampled. Timing relation of transitions in the local transmit signal relative to the receiver sampling phase is set such that transmit signal cancellation is optimum at receiver sampling phase, by changing the delay applied to the local transmit signal.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: July 23, 2019
    Inventor: Shahab Ardalan
  • Publication number: 20150063349
    Abstract: An improvement to the prior-art extends an intelligent solution beyond simple IP packet switching. It intersects with computing, analytics, storage and performs delivery diversity in an efficient intelligent manner. A flexible programmable network is enabled that can store, time shift, deliver, process, analyze, map, optimize and switch flows at hardware speed. Multi-layer functions are enabled in the same node by scaling for diversified data delivery, scheduling, storing, and processing at much lower cost to enable multi-dimensional optimization options and time shift delivery, protocol optimization, traffic profiling, load balancing, and traffic classification and traffic engineering. An integrated high performance flexible switching fabric has integrated computing, memory storage, programmable control, integrated self-organizing flow control and switching.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Inventors: SHAHAB ARDALAN, Mona Mojdeh