Patents by Inventor Shahar Ben-Menahem

Shahar Ben-Menahem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11397055
    Abstract: A vapor-chamber that includes a porous microstructure sheet with varying surface energy across different regions to optimize utilization of a working fluid. Modulating the surface energy of the porous microstructure sheet can minimize the amount of the working fluid that becomes trapped in the condenser region(s) and maximize an aggregate thin-film evaporation area of the working fluid in the evaporator region(s). The condenser region of the vapor-chamber is treated so that the internal surfaces have low surface energy. For example, the treatment may cause the condenser region to become hydrophobic to minimize the amount of fluid that becomes trapped in the condenser. The evaporator region is treated so that the internal surfaces have high surface energy. For example, the treatment may cause the evaporator region to become hydrophilic to induce the formation of large numbers of robust (e.g., dry-out resistant) thin-film evaporation sites.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: July 26, 2022
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Shahar Ben-Menahem, Tzu-Yuan Lin, Michael Nikkhoo
  • Publication number: 20210207893
    Abstract: A vapor-chamber that includes a porous microstructure sheet with varying surface energy across different regions to optimize utilization of a working fluid. Modulating the surface energy of the porous microstructure sheet can minimize the amount of the working fluid that becomes trapped in the condenser region(s) and maximize an aggregate thin-film evaporation area of the working fluid in the evaporator region(s). The condenser region of the vapor-chamber is treated so that the internal surfaces have low surface energy. For example, the treatment may cause the condenser region to become hydrophobic to minimize the amount of fluid that becomes trapped in the condenser. The evaporator region is treated so that the internal surfaces have high surface energy. For example, the treatment may cause the evaporator region to become hydrophilic to induce the formation of large numbers of robust (e.g., dry-out resistant) thin-film evaporation sites.
    Type: Application
    Filed: February 1, 2021
    Publication date: July 8, 2021
    Inventors: Shahar Ben-Menahem, Tzu-Yuan Lin, Michael Nikkhoo
  • Patent number: 10989919
    Abstract: A pad shape for a support assembly is optimized to provide universal fitting characteristics to Head-Mounted Display (HMD) devices. The pad shape enables a display of a single HMD device to be reliably aligned within multiple users' fields-of-view notwithstanding significant variations of shape and size between these users' heads. Optimal positioning of the display within the multiple users' fields-of-view may be achieved by positionally constraining the HMD device against a portion of the head that varies relatively slightly as compared to other portions of the head. The contact pad includes a curved region having a shape defined by a high order polynomial that corresponds to an empirically determined best fit surface. Empirically determining one or both of the best fit surface or the high order polynomial may include aligning a plurality of “forehead” point clouds that map the geometries of a sample set of users' foreheads.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: April 27, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Igor Markovsky, Shahar Ben-Menahem, Michael Nikkhoo, Tzu-Yuan Lin
  • Patent number: 10962298
    Abstract: A two-phase thermodynamic system includes a porous microstructure sheet to increase an aggregate thin-film evaporation area of a working fluid. The porous microstructure sheet may be disposed at a liquid-vapor boundary of the working fluid. The porous microstructure sheet has “micro” pores through which the working fluid flows from a liquid flow path on one side of the porous microstructure sheet to a vapor flow path on the other side of the porous microstructure sheet. Individual pores induce the working fluid to form thin-film evaporation regions. The porous microstructure sheet may have a pore density so as to increase an aggregate thin-film evaporation area of the working fluid. In this way, the overall thermal resistance across all liquid-vapor interfaces (menisci) of the working fluid is substantially decreased over conventional vapor chamber.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: March 30, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Shahar Ben-Menahem, Tzu-Yuan Lin, Michael Nikkhoo
  • Patent number: 10935325
    Abstract: A vapor-chamber that includes a porous microstructure sheet with varying surface energy across different regions to optimize utilization of a working fluid. Modulating the surface energy of the porous microstructure sheet can minimize the amount of the working fluid that becomes trapped in the condenser region(s) and maximize an aggregate thin-film evaporation area of the working fluid in the evaporator region(s). The condenser region of the vapor-chamber is treated so that the internal surfaces have low surface energy. For example, the treatment may cause the condenser region to become hydrophobic to minimize the amount of fluid that becomes trapped in the condenser. The evaporator region is treated so that the internal surfaces have high surface energy. For example, the treatment may cause the evaporator region to become hydrophilic to induce the formation of large numbers of robust (e.g., dry-out resistant) thin-film evaporation sites.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: March 2, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Shahar Ben-Menahem, Tzu-Yuan Lin, Michael Nikkhoo
  • Patent number: 10771868
    Abstract: A system for detecting occupancy of an enclosure may include a sensing system adapted to monitor utility information for the enclosure which tends to indicate a likelihood of occupancy of the enclosure. The utility information may include power line information, Smart Meter information, Wi-Fi information, etc. The system may also include a processing system programmed to estimate occupancy of the enclosure based at least in part on the monitored utility information by the sensing system.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: September 8, 2020
    Assignee: Google LLC
    Inventors: Anthony Michael Fadell, Matthew Lee Rogers, Kipp Avery Rogers, Abraham K. Ishihara, Shahar Ben-Menahem, Rangoli Sharan
  • Publication number: 20200103175
    Abstract: A vapor-chamber that includes a porous microstructure sheet with varying surface energy across different regions to optimize utilization of a working fluid. Modulating the surface energy of the porous microstructure sheet can minimize the amount of the working fluid that becomes trapped in the condenser region(s) and maximize an aggregate thin-film evaporation area of the working fluid in the evaporator region(s). The condenser region of the vapor-chamber is treated so that the internal surfaces have low surface energy. For example, the treatment may cause the condenser region to become hydrophobic to minimize the amount of fluid that becomes trapped in the condenser. The evaporator region is treated so that the internal surfaces have high surface energy. For example, the treatment may cause the evaporator region to become hydrophilic to induce the formation of large numbers of robust (e.g., dry-out resistant) thin-film evaporation sites.
    Type: Application
    Filed: March 13, 2019
    Publication date: April 2, 2020
    Inventors: Shahar BEN-MENAHEM, Tzu-Yuan LIN, Michael NIKKHOO
  • Publication number: 20200103176
    Abstract: A two-phase thermodynamic system includes a porous microstructure sheet to increase an aggregate thin-film evaporation area of a working fluid. The porous microstructure sheet may be disposed at a liquid-vapor boundary of the working fluid. The porous microstructure sheet has “micro” pores through which the working fluid flows from a liquid flow path on one side of the porous microstructure sheet to a vapor flow path on the other side of the porous microstructure sheet. Individual pores induce the working fluid to form thin-film evaporation regions. The porous microstructure sheet may have a pore density so as to increase an aggregate thin-film evaporation area of the working fluid. In this way, the overall thermal resistance across all liquid-vapor interfaces (menisci) of the working fluid is substantially decreased over conventional vapor chamber.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Shahar BEN-MENAHEM, Tzu-Yuan LIN, Michael NIKKHOO
  • Publication number: 20190353431
    Abstract: A thermodynamic system includes a compensational wick geometry to enhance fluid flow between a condenser region and an evaporator region. Geometric features are modulated between a condenser region and an evaporator region to increase capillary forces within wicking structures without excessively increasing hydraulic resistance to the liquid flowing through these return-path wicking structures. The thermodynamic system may include a liquid flow path having channels extending from the condenser region to the evaporator region. At various segments of the channels, individual cavity sizes are reduced to induce capillary action toward the evaporator region. Various geometric features compensate for these cavity size reductions, to mitigate the effects of increased resistances to liquid flow.
    Type: Application
    Filed: May 18, 2018
    Publication date: November 21, 2019
    Inventors: Shahar BEN-MENAHEM, Igor MARKOVSKY, Tzu-Yuan LIN, Michael NIKKHOO
  • Publication number: 20190353901
    Abstract: A pad shape for a support assembly is optimized to provide universal fitting characteristics to Head-Mounted Display (HMD) devices. The pad shape enables a display of a single HMD device to be reliably aligned within multiple users' fields-of-view notwithstanding significant variations of shape and size between these users' heads. Optimal positioning of the display within the multiple users' fields-of-view may be achieved by positionally constraining the HMD device against a portion of the head that varies relatively slightly as compared to other portions of the head. The contact pad includes a curved region having a shape defined by a high order polynomial that corresponds to an empirically determined best fit surface. Empirically determining one or both of the best fit surface or the high order polynomial may include aligning a plurality of “forehead” point clouds that map the geometries of a sample set of users' foreheads.
    Type: Application
    Filed: May 18, 2018
    Publication date: November 21, 2019
    Inventors: Igor MARKOVSKY, Shahar BEN-MENAHEM, Michael NIKKHOO, Tzu-Yuan LIN
  • Patent number: 10107513
    Abstract: Modeling the behavior of an enclosure for use by a control system of an HVAC system is described. A model for the enclosure that describes the enclosure's behavior for use by the control system is updated based on weather forecast data. The weather forecast data can include predictions more than 24 hours in the future, and can include predictions on temperature, humidity and/or dew point, solar output, precipitation. The model for the enclosure can also be updated based on additional information and data. The model for the enclosure can be updated based also on an enclosure model stored in a database, and/or enclosure information from a user. The model can be updated based on active testing of the enclosure which can be performed automatically or in response to user input. The testing can include heating and/or cooling the enclosure at times when the enclosure is not likely occupied.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: October 23, 2018
    Assignee: Google LLC
    Inventors: Anthony Michael Fadell, Matthew Lee Rogers, Kipp Avery Rogers, Abraham K. Ishihara, Shahar Ben-Menahem, Rangoli Sharan
  • Publication number: 20170343418
    Abstract: An apparatus including a palette body, a plurality of heat distribution plates mounted on the body and positioned adjacent each other, a plurality of insulators positioned intermediate the adjacently positioned heat distribution plates, and a plurality of thermal camera calibration reference swatches including a near-ideal blackbody reference swatch, a diffuse reflective reference swatch, and a first material of the device under testing reference swatch, each reference swatch being mounted on a corresponding one of the heat distribution plates and thermally insulated from other reference swatches by the insulators.
    Type: Application
    Filed: May 27, 2016
    Publication date: November 30, 2017
    Inventors: Erin Hurbi, Michael Nikkhoo, Igor Markovsky, Shahar Ben-Menahem
  • Publication number: 20160100233
    Abstract: A system for detecting occupancy of an enclosure may include a sensing system adapted to monitor utility information for the enclosure which tends to indicate a likelihood of occupancy of the enclosure. The utility information may include power line information, Smart Meter information, Wi-Fi information, etc. The system may also include a processing system programmed to estimate occupancy of the enclosure based at least in part on the monitored utility information by the sensing system.
    Type: Application
    Filed: December 16, 2015
    Publication date: April 7, 2016
    Applicant: Google Inc.
    Inventors: Anthony Michael Fadell, Matthew Lee Rogers, Kipp Avery Rogers, Abraham K. Ishihara, Shahar Ben-Menahem, Rangoli Sharan
  • Patent number: 9245229
    Abstract: Systems and methods are described for predicting and/or detecting occupancy of an enclosure, such as a dwelling or other building, which can be used for a number of applications. An a priori stochastic model of occupancy patterns based on information of the enclosure and/or the expected occupants of the enclosure is used to pre-seed an occupancy prediction engine. Along with data from an occupancy sensor, the occupancy prediction engine predicts future occupancy of the enclosure. Various systems and methods for detecting occupancy of an enclosure, such as a dwelling, are also described.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: January 26, 2016
    Assignee: Google Inc.
    Inventors: Anthony Michael Fadell, Matthew Lee Rogers, Kipp Avery Rogers, Abraham K. Ishihara, Shahar Ben-Menahem, Rangoli Sharan
  • Publication number: 20150167996
    Abstract: Modeling the behavior of an enclosure for use by a control system of an HVAC system is described. A model for the enclosure that describes the enclosure's behavior for use by the control system is updated based on weather forecast data. The weather forecast data can include predictions more than 24 hours in the future, and can include predictions on temperature, humidity and/or dew point, solar output, precipitation. The model for the enclosure can also be updated based on additional information and data. The model for the enclosure can be updated based also on an enclosure model stored in a database, and/or enclosure information from a user. The model can be updated based on active testing of the enclosure which can be performed automatically or in response to user input. The testing can include heating and/or cooling the enclosure at times when the enclosure is not likely occupied.
    Type: Application
    Filed: February 24, 2015
    Publication date: June 18, 2015
    Applicant: GOOGLE INC.
    Inventors: Anthony Michael Fadell, Matthew Lee Rogers, Kipp Avery Rogers, Abraham K. Ishihara, Shahar Ben-Menahem, Rangoli Sharan
  • Publication number: 20150006463
    Abstract: Systems and methods are described for predicting and/or detecting occupancy of an enclosure, such as a dwelling or other building, which can be used for a number of applications. An a priori stochastic model of occupancy patterns based on information of the enclosure and/or the expected occupants of the enclosure is used to pre-seed an occupancy prediction engine. Along with data from an occupancy sensor, the occupancy prediction engine predicts future occupancy of the enclosure. Various systems and methods for detecting occupancy of an enclosure, such as a dwelling, are also described.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 1, 2015
    Applicant: NEST LABS, INC.
    Inventors: Anthony Michael FADELL, Matthew Lee ROGERS, Kipp Avery ROGERS, Abraham K. ISHIHARA, Shahar BEN-MENAHEM, Rangoli SHARAN
  • Patent number: 8788448
    Abstract: Systems and methods are described for predicting and/or detecting occupancy of an enclosure, such as a dwelling or other building, which can be used for a number of applications. An a priori stochastic model of occupancy patterns based on information of the enclosure and/or the expected occupants of the enclosure is used to pre-seed an occupancy prediction engine. Along with data from an occupancy sensor, the occupancy prediction engine predicts future occupancy of the enclosure. Various systems and methods for detecting occupancy of an enclosure, such as a dwelling, are also described.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: July 22, 2014
    Assignee: Nest Labs, Inc.
    Inventors: Anthony Michael Fadell, Matthew Lee Rogers, Kipp Avery Rogers, Abraham K. Ishihara, Shahar Ben-Menahem, Rangoli Sharan
  • Patent number: 8606374
    Abstract: Systems and methods for modeling the behavior of an enclosure for use by a control system of an HVAC system are described. A model for the enclosure that describes the behavior of the enclosure for use by the control system is updated based on a weather forecast data. The weather forecast data can include predictions more than 24 hours in the future, and can include predictions such as temperature, humidity and/or dew point, solar output, precipitation. The model for the enclosure can also be updated based on additional information and data such as historical weather data such as temperature, humidity, wind, solar output and precipitation, occupancy data, such as predicted and/or detected occupancy data, calendar data, and data from the one or more weather condition sensors that sense current parameters such as temperature, humidity, wind, precipitation, and/or solar output.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: December 10, 2013
    Assignee: Nest Labs, Inc.
    Inventors: Anthony Michael Fadell, Matthew Lee Rogers, Kipp Avery Rogers, Abraham K. Ishihara, Shahar Ben-Menahem, Rangoli Sharan
  • Publication number: 20130297555
    Abstract: Systems and methods are described for predicting and/or detecting occupancy of an enclosure, such as a dwelling or other building, which can be used for a number of applications. An a priori stochastic model of occupancy patterns based on information of the enclosure and/or the expected occupants of the enclosure is used to pre-seed an occupancy prediction engine. Along with data from an occupancy sensor, the occupancy prediction engine predicts future occupancy of the enclosure. Various systems and methods for detecting occupancy of an enclosure, such as a dwelling, are also described.
    Type: Application
    Filed: July 5, 2013
    Publication date: November 7, 2013
    Inventors: Anthony Michael FADELL, Matthew Lee ROGERS, Kipp Avery ROGERS, Abraham K. ISHIHARA, Shahar BEN-MENAHEM, Rangoli SHARAN
  • Patent number: 8510255
    Abstract: Systems and methods are described for predicting and/or detecting occupancy of an enclosure, such as a dwelling or other building, which can be used for a number of applications. An a priori stochastic model of occupancy patterns based on information of the enclosure and/or the expected occupants of the enclosure is used to pre-seed an occupancy prediction engine. Along with data from an occupancy sensor, the occupancy prediction engine predicts future occupancy of the enclosure. Various systems and methods for detecting occupancy of an enclosure, such as a dwelling, are also described.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: August 13, 2013
    Assignee: Nest Labs, Inc.
    Inventors: Anthony Michael Fadell, Matthew Lee Rogers, Kipp Avery Rogers, Abraham K. Ishihara, Shahar Ben-Menahem, Rangoli Sharan