Patents by Inventor Shahid P. Qureshi

Shahid P. Qureshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10273328
    Abstract: The present application is directed to methods for preparation of polymer particles in gel form and carbon materials made therefrom. The carbon materials comprise enhanced electrochemical properties and find utility in any number of electrical devices, for example, as electrode material in ultracapacitors or batteries. The methods herein can also be employed generally to improve emulsion and/or suspension polymerization processes by improved control of diffusion of acidic and basic species between the polymer and secondary phases.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: April 30, 2019
    Assignees: Georgia-Pacific Chemicals LLC, Energ2 Technologies, Inc.
    Inventors: Benjamin E. Kron, Katharine Geramita, Henry R. Costantino, Joseph Frank Ludvik, Xing Dong, Shahid P. Qureshi, Gerald A. Knazek
  • Patent number: 10173900
    Abstract: The present application is directed to methods for preparation of polymer particles in gel form and carbon materials made therefrom. The carbon materials can have enhanced electrochemical properties and find utility in any number of electrical devices, for example, as electrode material in ultracapacitors or batteries.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: January 8, 2019
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Joseph F. Ludvik, Xing Dong, Shahid P. Qureshi, John B. Hines, Gerald Knazek, Renette E. Richard, Katharine Geramita, Benjamin E. Kron, Henry R. Costantino, Aaron M. Feaver, Avery Sakshaug, Leah A. Thompkins, Alan Tzu-Yang Chang
  • Patent number: 9926401
    Abstract: Methods for making wet gels and dried gels therefrom are provided. The method for making a wet gel can include combining a hydroxybenzene compound, an aldehyde compound, and an additive to produce a reaction mixture. The additive can include a carboxylic acid, an anhydride, a homopolymer, a copolymer, or any mixture thereof. At least the hydroxybenzene compound and the aldehyde compound can be reacted to produce a wet gel. The reaction mixture can include about 10 wt % to about 65 wt % of the hydroxybenzene compound, about 5 wt % to about 25 wt % of the aldehyde compound, up to about 85 wt % of the carboxylic acid, up to about 40 wt % of the anhydride, up to about 40 wt % of the homopolymer, and up to about 40 wt % of the copolymer, where weight percent values are based on the combined weight of the hydroxybenzene compound, the aldehyde compound, and the additive.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: March 27, 2018
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Xing Dong, Shahid P. Qureshi, Christopher M. Lee, Kelly A. Shoemake, Joseph Frank Ludvik
  • Publication number: 20170316888
    Abstract: Methods for making carbon materials are provided. In at least one specific embodiment, the method can include combining one or more polymer precursors with one or more liquids to produce a mixture. The mixture can be an emulsion, dispersion, or a suspension. The liquid can include hexane, pentane, cyclopentane, benzene, toluene, o-xylene, m-xylene, p-xylene, diethyl ether, ethylmethylketone, dichloromethane, tetrahydrofuran, mineral oils, paraffin oils, vegetable derived oils, or any mixture thereof. The method can also include aging the mixture at a temperature and time sufficient for the polymer precursor to react and form polymer gel particles having a volume average particle size (Dv,50) of the polymer particles in gel form greater than or equal to 1 mm. The method can also include heating the polymer gel particles to produce a carbon material.
    Type: Application
    Filed: July 13, 2017
    Publication date: November 2, 2017
    Applicants: Georgia-Pacific Chemicals LLC, Energ2 Technologies, Inc.
    Inventors: Katharine Geramita, Benjamin E. Kron, Henry R. Costantino, Aaron M. Feaver, Avery Sakshaug, Leah A. Thompkins, Alan Tzu-Yang Chang, Xing Dong, Shahid P. Qureshi, John B. Hines, Gerald A. Knazek, Joseph Frank Ludvik
  • Patent number: 9714172
    Abstract: Methods for making carbon materials are provided. In at least one specific embodiment, the method can include combining one or more polymer precursors with one or more liquids to produce a mixture. The mixture can be an emulsion, dispersion, or a suspension. The liquid can include hexane, pentane, cyclopentane, benzene, toluene, o-xylene, m-xylene, p-xylene, diethyl ether, ethylmethylketone, dichloromethane, tetrahydrofuran, mineral oils, paraffin oils, vegetable derived oils, or any mixture thereof. The method can also include aging the mixture at a temperature and time sufficient for the polymer precursor to react and form polymer gel particles having a volume average particle size (Dv,50) of the polymer particles in gel form greater than or equal to 1 mm. The method can also include heating the polymer gel particles to produce a carbon material.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: July 25, 2017
    Assignees: Georgia-Pacific Chemicals LLC, EnerG2 Technologies, Inc.
    Inventors: Katharine Geramita, Benjamin E. Kron, Henry R. Costantino, Aaron M. Feaver, Avery Sakshaug, Leah A. Thompkins, Alan Tzu-Yang Chang, Xing Dong, Shahid P. Qureshi, John B. Hines, Gerald A. Knazek, Joseph Frank Ludvik
  • Publication number: 20170190826
    Abstract: Methods for making wet gels and dried gels therefrom are provided. The method for making a wet gel can include combining a hydroxybenzene compound, an aldehyde compound, and an additive to produce a reaction mixture. The additive can include a carboxylic acid, an anhydride, a homopolymer, a copolymer, or any mixture thereof. At least the hydroxybenzene compound and the aldehyde compound can be reacted to produce a wet gel. The reaction mixture can include about 10 wt % to about 65 wt % of the hydroxybenzene compound, about 5 wt % to about 25 wt % of the aldehyde compound, up to about 85 wt % of the carboxylic acid, up to about 40 wt % of the anhydride, up to about 40 wt % of the homopolymer, and up to about 40 wt % of the copolymer, where weight percent values are based on the combined weight of the hydroxybenzene compound, the aldehyde compound, and the additive.
    Type: Application
    Filed: March 17, 2017
    Publication date: July 6, 2017
    Applicant: Georgia-Pacific Chemicals LLC
    Inventors: Xing Dong, Shahid P. Qureshi, Christopher M. Lee, Kelly A. Shoemake, Joseph Frank Ludvik
  • Patent number: 9598525
    Abstract: Methods for making wet gels and dried gels therefrom are provided. The method for making a wet gel can include combining a hydroxybenzene compound, an aldehyde compound, and an additive to produce a reaction mixture. The additive can include a carboxylic acid, an anhydride, a homopolymer, a copolymer, or any mixture thereof. At least the hydroxybenzene compound and the aldehyde compound can be reacted to produce a wet gel. The reaction mixture can include about 10 wt % to about 65 wt % of the hydroxybenzene compound, about 5 wt % to about 25 wt % of the aldehyde compound, up to about 85 wt % of the carboxylic acid, up to about 40 wt % of the anhydride, up to about 40 wt % of the homopolymer, and up to about 40 wt % of the copolymer, where weight percent values are based on the combined weight of the hydroxybenzene compound, the aldehyde compound, and the additive.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: March 21, 2017
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Xing Dong, Shahid P. Qureshi, Christopher M. Lee, Kelly A. Shoemake, Joseph Frank Ludvik
  • Publication number: 20170029281
    Abstract: The present application is directed to methods for preparation of polymer particles in gel form and carbon materials made therefrom. The carbon materials comprise enhanced electrochemical properties and find utility in any number of electrical devices, for example, as electrode material in ultracapacitors or batteries. The methods herein can also be employed generally to improve emulsion and/or suspension polymerization processes by improved control of diffusion of acidic and basic species between the polymer and secondary phases.
    Type: Application
    Filed: October 10, 2016
    Publication date: February 2, 2017
    Applicant: Georgia-Pacific Chemicals LLC
    Inventors: Benjamin E. Kron, Katharine Geramita, Henry R. Costantino, Joseph Frank Ludvik, Xing Dong, Shahid P. Qureshi, Gerald A. Knazek
  • Patent number: 9464162
    Abstract: The present application is directed to methods for preparation of polymer particles in gel form and carbon materials made therefrom. The carbon materials comprise enhanced electrochemical properties and find utility in any number of electrical devices, for example, as electrode material in ultracapacitors or batteries. The methods herein can also be employed generally to improve emulsion and/or suspension polymerization processes by improved control of diffusion of acidic and basic species between the polymer and secondary phases.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: October 11, 2016
    Assignees: Georgia-Pacific Chemicals LLC, Energ2 Technologies, Inc.
    Inventors: Benjamin E. Kron, Katharine Geramita, Henry R. Costantino, Joseph Frank Ludvik, Xing Dong, Shahid P. Qureshi, Gerald A. Knazek
  • Publication number: 20160039970
    Abstract: The present application is directed to methods for preparation of polymer particles in gel form and carbon materials made therefrom. The carbon materials comprise enhanced electrochemical properties and find utility in any number of electrical devices, for example, as electrode material in ultracapacitors or batteries. The methods herein can also be employed generally to improve emulsion and/or suspension polymerization processes by improved control of diffusion of acidic and basic species between the polymer and secondary phases.
    Type: Application
    Filed: March 13, 2014
    Publication date: February 11, 2016
    Applicants: Energ2 Technologies, Inc., Georgia-Pacific Chemicals LLC
    Inventors: Benjamin E. Kron, Katharine Geramita, Henry R. Costantino, Joseph Frank Ludvik, Xing Dong, Shahid P. Qureshi, Gerald A. Knazek
  • Publication number: 20150321920
    Abstract: Methods for making carbon materials are provided. In at least one specific embodiment, the method can include combining one or more polymer precursors with one or more liquids to produce a mixture. The mixture can be an emulsion, dispersion, or a suspension. The liquid can include hexane, pentane, cyclopentane, benzene, toluene, o-xylene, m-xylene, p-xylene, diethyl ether, ethylmethylketone, dichloromethane, tetrahydrofuran, mineral oils, paraffin oils, vegetable derived oils, or any mixture thereof. The method can also include aging the mixture at a temperature and time sufficient for the polymer precursor to react and form polymer gel particles having a volume average particle size (Dv,50) of the polymer particles in gel form greater than or equal to 1 mm. The method can also include heating the polymer gel particles to produce a carbon material.
    Type: Application
    Filed: November 26, 2013
    Publication date: November 12, 2015
    Applicants: ENERG2 TECHNOLOGIES, INC., GEORGIA-PACIFIC CHEMICALS LLC
    Inventors: Katharine Geramita, Benjamin E. Kron, Henry R. Costantino, Aaron M. Feaver, Avery Sakshaug, Leah A. Thompkins, Alan Tzu-Yang Chang, Xing Dong, Shahid P. Qureshi, John B. Hines, Gerald A. Knazek, Joseph Frank Ludvik
  • Patent number: 9133295
    Abstract: Methods for making polymer particles in gel form via an emulsion and/or suspension polymerization are provided. In at least one specific embodiment, the method can include reacting a first reaction mixture comprising a phenolic monomer, an aldehyde monomer, and a first catalyst to produce a prepolymer. The method can also include combining the prepolymer with a carrier fluid and a second catalyst to produce a second reaction mixture. The second catalyst can include a dicarboxylic acid, an anhydride, a dihydroxybenzene, or any mixture thereof. The method can also include polymerizing the prepolymer to form polymer particles in gel form.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: September 15, 2015
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Shahid P. Qureshi, Xing Dong, Charles C. Chan, Joseph Frank Ludvik
  • Publication number: 20150087731
    Abstract: Methods for making wet gels and dried gels therefrom are provided. The method for making a wet gel can include combining a hydroxybenzene compound, an aldehyde compound, and an additive to produce a reaction mixture. The additive can include a carboxylic acid, an anhydride, a homopolymer, a copolymer, or any mixture thereof. At least the hydroxybenzene compound and the aldehyde compound can be reacted to produce a wet gel. The reaction mixture can include about 10 wt % to about 65 wt % of the hydroxybenzene compound, about 5 wt % to about 25 wt % of the aldehyde compound, up to about 85 wt % of the carboxylic acid, up to about 40 wt % of the anhydride, up to about 40 wt % of the homopolymer, and up to about 40 wt % of the copolymer, where weight percent values are based on the combined weight of the hydroxybenzene compound, the aldehyde compound, and the additive.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 26, 2015
    Inventors: Xing Dong, Shahid P. Qureshi, Christopher M. Lee, Kelly A. Shoemake, Joseph Frank Ludvik
  • Publication number: 20140148560
    Abstract: Methods for making polymer particles in gel form via an emulsion and/or suspension polymerization are provided. In at least one specific embodiment, the method can include reacting a first reaction mixture comprising a phenolic monomer, an aldehyde monomer, and a first catalyst to produce a prepolymer. The method can also include combining the prepolymer with a carrier fluid and a second catalyst to produce a second reaction mixture. The second catalyst can include a dicarboxylic acid, an anhydride, a dihydroxybenzene, or any mixture thereof. The method can also include polymerizing the prepolymer to form polymer particles in gel form.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 29, 2014
    Applicant: Georgia-Pacific Chemicals LLC
    Inventors: Shahid P. Qureshi, Xing Dong, Charles C. Chan, Joseph Frank Ludvik
  • Patent number: 7642333
    Abstract: An anhydride and resorcinol latent catalyst system for a phenolic resole resin provides a resin having long pot life and long shelf life, yet cures quickly thereafter.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: January 5, 2010
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Shahid P. Qureshi, Charles C. Chan
  • Publication number: 20080293911
    Abstract: An anhydride and resorcinol latent catalyst system for a phenolic resole resin provides a resin having long pot life and long shelf life, yet cures quickly thereafter.
    Type: Application
    Filed: May 21, 2007
    Publication date: November 27, 2008
    Applicant: Georgia-Pacific Chemicals LLC
    Inventors: Shahid P. Qureshi, Charles C. Chan
  • Patent number: 7087703
    Abstract: This invention relates to a resin composition capable of being thermally cured while minimizing or eliminating voids in the resulting composite, the composition having both a long pot life at low temperatures and a fast curing rate at higher temperatures containing a mixture of (a) a phenol-formaldehyde resole resin, and (b) an etherified hardener, the etherified hardener being prepared from an alkoxylated polyol or a mono epoxy functional diluent.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: August 8, 2006
    Assignee: Georgia-Pacific Resins, Inc.
    Inventors: Shahid P. Qureshi, Charles C. Chan
  • Patent number: 6565976
    Abstract: A pultrusion resin composition comprising about 75 wt % to about 85 wt % of a phenolic resin, about 9 wt % to about 20 wt % of the reaction product of a polyhydroxy compound and an epoxy-functional polysiloxane, about 6 wt % to about 15 wt %, of a phenolic epoxy, and about 0.2 wt % to about 1 wt % of a catalyst, based on total weight of the composition. Pultruded products are formed by drawing fibrous reinforcement through a bath of the pultrusion resin composition.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: May 20, 2003
    Assignee: Georgia-Pacific Resins, Inc.
    Inventors: Shahid P. Qureshi, Harvey G. Dixon
  • Publication number: 20030092866
    Abstract: A pultrusion resin composition comprising about 75 wt % to about 85 wt % of a phenolic resin, about 9 wt % to about 20 wt % of the reaction product of a polyhydroxy compound and an epoxy-functional polysiloxane, about 6 wt % to about 15 wt %, of a phenolic epoxy, and about 0.2 wt % to about 1 wt % of a catalyst, based on total weight of the composition. Pultruded products are formed by drawing fibrous reinforcement through a bath of the pultrusion resin composition.
    Type: Application
    Filed: August 6, 2001
    Publication date: May 15, 2003
    Inventors: Shahid P. Qureshi, Harvey G. Dixon
  • Patent number: 6342303
    Abstract: The preparation of composites using epoxy-functional silicones as additives to phenolic resole resins.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: January 29, 2002
    Assignee: Georgia-Pacific Resins, Inc.
    Inventors: Pablo G. Dopico, Shahid P. Qureshi, Ellen V. Nagy