Patents by Inventor shahnawaz Hossain Molla

shahnawaz Hossain Molla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11684917
    Abstract: A microfluidic apparatus includes a substrate defining a microchannel having inlet and an outlet defining a length of the microchannel. The microchannel has a main channel extending from the inlet to the outlet, and a plurality of side cavities extending from the main channel. The cavities are in fluid communication with the main channel. A method includes introducing a sample into the microchannel through the inlet to fill the entire microchannel, and then introducing a solvent into the microchannel through the inlet at a controlled flow rate and inlet pressure. A developed solvent front then moves along the main channel from the inlet to the outlet while displacing the sample in the main channel. Images of the microchannel are acquired as the front moves, and a miscibility condition is determined based on the images.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: June 27, 2023
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Shahnawaz Hossain Molla, John Ratulowski, Farshid Mostowfi, Jinglin Gao
  • Publication number: 20220364465
    Abstract: Methods and apparatus provide for determining a reservoir fluid phase envelope from downhole fluid analysis data using machine learning techniques.
    Type: Application
    Filed: October 22, 2020
    Publication date: November 17, 2022
    Inventors: Shahnawaz Hossain Molla, Farshid Mostowfi
  • Publication number: 20220349302
    Abstract: Embodiments present a method for fluid type identification from a downhole fluid analysis that uses machine learning techniques that are trained and derived from a computer model using pressure, temperature and downhole optical characteristics of sampled fluid. The method comprises collecting optical spectral data for a downhole fluid; providing the collected optical spectral data to a trained classification module; processing the collected optical spectral data with the trained classification module configured to determine a fluid type classification; and determining a fluid type based upon the classification based upon the trained classification module.
    Type: Application
    Filed: October 22, 2020
    Publication date: November 3, 2022
    Inventors: Shahnawaz Hossain Molla, Farshid Mostowfi, John Nighswander, Adriaan Gisolf, Kai Hsu, Shunsuke Fukagawa, Thomas Pfeiffer
  • Patent number: 11028690
    Abstract: A technique facilitates detection and analysis of constituents, e.g. chemicals, which may be found in formation fluids and/or other types of fluids. The technique comprises intermittently introducing a first fluid and a second fluid into a channel in a manner which forms slugs of the first fluid separated by the second fluid. The intermittent fluids are flowed through the channel to create a mixing action which mixes the fluid in the slugs. The mixing increases the exchange, e.g. transfer, of the chemical constituent between the second fluid and the first fluid. The exchange aids in sensing an amount of the chemical or chemicals for analysis. In many applications, the intermittent introduction, mixing, and measuring can be performed in a subterranean environment.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: June 8, 2021
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Farshid Mostowfi, Ronald E. G. van Hal, Shahnawaz Hossain Molla, Jane T. Lam, Amy Du, Neil William Bostrom, Michael Mallari Toribio
  • Publication number: 20210062650
    Abstract: Methods (and related apparatus) include obtaining data regarding a measured property. The measured property includes an amount of each of predetermined hydrocarbons in a gas sample extracted from drilling fluid exiting a wellbore having a hydrocarbon resource. An unknown characteristic of an investigated fluid property of the hydrocarbon resource is predicted utilizing the obtained input data and one or more predetermined models each built via statistical classification and regression analysis of a preexisting database containing records. Each record includes known characteristics of fluid properties of a different one of known reservoir fluids. The fluid properties include the investigated fluid property and the measured property. The investigated fluid property includes a fluid type of the hydrocarbon resource, an amount of at least one additional hydrocarbon, gas-oil ratio, or stock tank oil density.
    Type: Application
    Filed: September 2, 2020
    Publication date: March 4, 2021
    Inventors: Shahnawaz Hossain Molla, Maneesh Pisharat, Yujian Wu, Farshid Mostowfi, Oscar Eduardo Torres Jaimes
  • Patent number: 10895544
    Abstract: A microfluidic apparatus has a microchannel that includes at least one vertically oriented segment with a top section having a relatively wide opening and a bottom section having a relatively narrow opening. The top section is larger in volume relative to the bottom sections, and the middle sections taper down in at least one dimension from the top section to the bottom section. One or tens or hundreds of vertically-oriented segments may be provided, and they are fluidly coupled to each other. Each segment acts as a pressure-volume-temperature (PVT) cell, and the microchannel apparatus may be used to determine a parameter of a fluid containing hydrocarbons such as the dew point of the fluid or the liquid drop-out as a function of pressure.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: January 19, 2021
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Shahnawaz Hossain Molla, Farshid Mostowfi, John Ratulowski
  • Publication number: 20200290040
    Abstract: A microfluidic apparatus includes a substrate defining a microchannel having inlet and an outlet defining a length of the microchannel. The microchannel has a main channel extending from the inlet to the outlet, and a plurality of side cavities extending from the main channel. The cavities are in fluid communication with the main channel. A method includes introducing a sample into the microchannel through the inlet to fill the entire microchannel, and then introducing a solvent into the microchannel through the inlet at a controlled flow rate and inlet pressure. A developed solvent front then moves along the main channel from the inlet to the outlet while displacing the sample in the main channel. Images of the microchannel are acquired as the front moves, and a miscibility condition is determined based on the images.
    Type: Application
    Filed: September 21, 2018
    Publication date: September 17, 2020
    Inventors: Shahnawaz Hossain Molla, John Ratulowski, Farshid Mostowfi, Jinglin Gao
  • Patent number: 10281397
    Abstract: An optical sensor and corresponding method of operation can detect a phase transition and/or related property of a hydrocarbon-based analyte. The optical sensor includes an optical element with a metallic film coupled or integral thereto, with a sample chamber holds the hydrocarbon-based analyte such that the hydrocarbon-based analyte is disposed adjacent the metallic layer. The optical sensor further includes a light source configured to direct light through the optical element such that the light is reflected by the metallic layer under conditions of surface plasmon resonance. The optical sensor analyzes the reflected light to detect a phase transition and/or related property of a hydrocarbon-based analyte.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: May 7, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Vincent Joseph Sieben, Kenneth John Chau, Shahnawaz Hossain Molla, Cailan Libby, Mohammed Al-Shakhs, Farshid Mostowfi, Simon Ivar Andersen, Elizabeth Jennings Smythe
  • Patent number: 10254216
    Abstract: An optical sensor includes a flow cell permitting flow of a hydrocarbon-based analyte therethrough. A metallic film is disposed adjacent or within the flow cell. At least one optical element directs polychromatic light for supply to an interface of the metallic film under conditions of surface plasmon resonance (SPR) and directs polychromatic light reflected at the interface of the metallic film (which is sensitive to SPR at such interface and thus provides an SPR sensing region within the flow cell) for output to at least one spectrometer that measures spectral data of such polychromatic light. A computer processing system is configured to process the measured spectral data over time as the hydrocarbon-based analyte flows through the flow cell to determine SPR peak wavelength over time and to process the SPR peak wavelength over time to determine at least one property related to phase transition of the analyte.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: April 9, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Vincent Joseph Sieben, Kenneth John Chau, Shahnawaz Hossain Molla, Farshid Mostowfi, Elizabeth Jennings Smythe
  • Publication number: 20180313213
    Abstract: A technique facilitates detection and analysis of constituents, e.g. chemicals, which may be found in formation fluids and/or other types of fluids. The technique comprises intermittently introducing a first fluid and a second fluid into a channel in a manner which forms slugs of the first fluid separated by the second fluid. The intermittent fluids are flowed through the channel to create a mixing action which mixes the fluid in the slugs. The mixing increases the exchange, e.g. transfer, of the chemical constituent between the second fluid and the first fluid. The exchange aids in sensing an amount of the chemical or chemicals for analysis. In many applications, the intermittent introduction, mixing, and measuring can be performed in a subterranean environment.
    Type: Application
    Filed: July 9, 2018
    Publication date: November 1, 2018
    Inventors: Farshid Mostowfi, Ronald E. G. van Hal, Shahnawaz Hossain Molla, Jane T. Lam, Amy Du, Neil William Bostrom, Michael Mallari Toribio
  • Patent number: 10024777
    Abstract: A test method and test apparatus is provided that employs a microfluidic device to characterize properties of a fluid. The microfluidic device has a first inlet port, an outlet port, and a microchannel as part of a fluid path between the first inlet port and the outlet port. While generating a flow of the fluid through the microchannel of the microfluidic device, fluid pressure at the first inlet port of the microfluidic device is measured and recorded in conjunction with varying the controlled temperature of the microchannel of the microfluidic device to characterize the properties of the fluid that flows through the microchannel of the microfluidic device. The properties of the fluid can relate to the clathrate hydrate formation condition of the fluid at the pressure of the flow through the microchannel of the microfluidic device.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: July 17, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Shahnawaz Hossain Molla, Farshid Mostowfi, Heng-Joo Ng
  • Patent number: 10018040
    Abstract: A technique facilitates detection and analysis of constituents, e.g. chemicals, which may be found in formation fluids and/or other types of fluids. The technique comprises intermittently introducing a first fluid and a second fluid into a channel in a manner which forms slugs of the first fluid separated by the second fluid. The intermittent fluids are flowed through the channel to create a mixing action which mixes the fluid in the slugs. The mixing increases the exchange, e.g. transfer, of the chemical constituent between the second fluid and the first fluid. The exchange aids in sensing an amount of the chemical or chemicals for analysis. In many applications, the intermittent introduction, mixing, and measuring can be performed in a subterranean environment.
    Type: Grant
    Filed: October 25, 2015
    Date of Patent: July 10, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Farshid Mostowfi, Ronald E. G. van Hal, Shahnawaz Hossain Molla, Jane T. Lam, Amy Du, Neil William Bostrom, Michael Mallari Toribio
  • Publication number: 20180003619
    Abstract: An optical sensor includes a flow cell permitting flow of a hydrocarbon-based analyte therethrough. A metallic film is disposed adjacent or within the flow cell. At least one optical element directs polychromatic light for supply to an interface of the metallic film under conditions of surface plasmon resonance (SPR) and directs polychromatic light reflected at the interface of the metallic film (which is sensitive to SPR at such interface and thus provides an SPR sensing region within the flow cell) for output to at least one spectrometer that measures spectral data of such polychromatic light. A computer processing system is configured to process the measured spectral data over time as the hydrocarbon-based analyte flows through the flow cell to determine SPR peak wavelength over time and to process the SPR peak wavelength over time to determine at least one property related to phase transition of the analyte.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 4, 2018
    Inventors: Vincent Joseph Sieben, Kenneth John Chau, Shahnawaz Hossain Molla, Farshid Mostowfi, Elizabeth Jennings Smythe Jennings Smythe
  • Patent number: 9752430
    Abstract: An apparatus for measuring phase behavior of a reservoir fluid comprises a first sample container and a second sample container in fluid communication with a microfluidic device defining a microchannel. A first pump and a second pump are operably associated with the sample containers and the microfluidic device to fill the microchannel with a reservoir fluid and to maintain a predetermined pressure of reservoir fluid within the microchannel.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: September 5, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Farshid Mostowfi, Shahnawaz Hossain Molla
  • Publication number: 20170227479
    Abstract: A microfluidic apparatus has a microchannel that includes at least one vertically oriented segment with a top section having a relatively wide opening and a bottom section having a relatively narrow opening. The top section is larger in volume relative to the bottom sections, and the middle sections taper down in at least one dimension from the top section to the bottom section. One or tens or hundreds of vertically-oriented segments may be provided, and they are fluidly coupled to each other. Each segment acts as a pressure-volume-temperature (PVT) cell, and the microchannel apparatus may be used to determine a parameter of a fluid containing hydrocarbons such as the dew point of the fluid or the liquid drop-out as a function of pressure.
    Type: Application
    Filed: June 22, 2015
    Publication date: August 10, 2017
    Inventors: Shahnawaz Hossain Molla, Farshid Mostowfi, John Ratulowski
  • Publication number: 20170131204
    Abstract: An optical sensor and corresponding method of operation can detect a phase transition and/or related property of a hydrocarbon-based analyte. The optical sensor includes an optical element with a metallic film coupled or integral thereto, with a sample chamber holds the hydrocarbon-based analyte such that the hydrocarbon-based analyte is disposed adjacent the metallic layer. The optical sensor further includes a light source configured to direct light through the optical element such that the light is reflected by the metallic layer under conditions of surface plasmon resonance. The optical sensor analyzes the reflected light to detect a phase transition and/or related property of a hydrocarbon-based analyte.
    Type: Application
    Filed: November 10, 2016
    Publication date: May 11, 2017
    Inventors: Vincent Joseph Sieben, Kenneth John Chau, Shahnawaz Hossain Molla, Cailan Libby, Mohammed Al-Shakhs, Farshid Mostowfi, Simon Ivar Andersen, Elizabeth Jennings Smythe
  • Patent number: 9513210
    Abstract: A method for measuring saturate, aromatic, and resin fractions of a hydrocarbon fluid includes separating maltenes from the hydrocarbon fluid and separating saturate, aromatic, and resin fractions from the maltenes. The method further includes determining an optical density of each of the saturate, aromatic, and resin fractions at a predetermined wavelength and correlating the optical density of each of the saturate, aromatic, and resin fractions to predetermined data to determine each of the saturate, aromatic, and resin fractions.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: December 6, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Abdel M. Kharrat, Shahnawaz Hossain Molla, Farshid Mostowfi
  • Publication number: 20160299047
    Abstract: A test method and test apparatus is provided that employs a microfluidic device to characterize properties of a fluid. The microfluidic device has a first inlet port, an outlet port, and a microchannel as part of a fluid path between the first inlet port and the outlet port. While generating a flow of the fluid through the microchannel of the microfluidic device, fluid pressure at the first inlet port of the microfluidic device is measured and recorded in conjunction with varying the controlled temperature of the microchannel of the microfluidic device to characterize the properties of the fluid that flows through the microchannel of the microfluidic device. The properties of the fluid can relate to the clathrate hydrate formation condition of the fluid at the pressure of the flow through the microchannel of the microfluidic device.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 13, 2016
    Inventors: Shahnawaz Hossain Molla, Farshid Mostowfi, Heng-Joo Ng
  • Publication number: 20160115787
    Abstract: A technique facilitates detection and analysis of constituents, e.g. chemicals, which may be found in formation fluids and/or other types of fluids. The technique comprises intermittently introducing a first fluid and a second fluid into a channel in a manner which forms slugs of the first fluid separated by the second fluid. The intermittent fluids are flowed through the channel to create a mixing action which mixes the fluid in the slugs. The mixing increases the exchange, e.g. transfer, of the chemical constituent between the second fluid and the first fluid. The exchange aids in sensing an amount of the chemical or chemicals for analysis. In many applications, the intermittent introduction, mixing, and measuring can be performed in a subterranean environment.
    Type: Application
    Filed: October 25, 2015
    Publication date: April 28, 2016
    Inventors: Farshid Mostowfi, Ronald E. G. van Hal, Shahnawaz Hossain Molla, Jane T. Lam, Amy Du, Neil William Bostrom, Michael Mallari Toribio
  • Publication number: 20140238122
    Abstract: An apparatus for measuring phase behavior of a reservoir fluid comprises a first sample container and a second sample container in fluid communication with a microfluidic device defining a microchannel. A first pump and a second pump are operably associated with the sample containers and the microfluidic device to fill the microchannel with a reservoir fluid and to maintain a predetermined pressure of reservoir fluid within the microchannel.
    Type: Application
    Filed: July 3, 2012
    Publication date: August 28, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Farshid Mostowfi, Shahnawaz Hossain Molla