Patents by Inventor Shahram Izadi

Shahram Izadi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10816331
    Abstract: The subject disclosure is directed towards active depth sensing based upon moving a projector or projector component to project a moving light pattern into a scene. Via the moving light pattern captured over a set of frames, e.g., by a stereo camera system, and estimating light intensity at sub-pixel locations in each stereo frame, higher resolution depth information at a sub-pixel level may be computed than is captured by the native camera resolution.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: October 27, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Sing Bing Kang, Shahram Izadi
  • Patent number: 10761612
    Abstract: In one or more implementations, a static geometry model is generated, from one or more images of a physical environment captured using a camera, using one or more static objects to model corresponding one or more objects in the physical environment. Interaction of a dynamic object with at least one of the static objects is identified by analyzing at least one image and a gesture is recognized from the identified interaction of the dynamic object with the at least one of the static objects to initiate an operation of the computing device.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: September 1, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Kim, Otmar D. Hilliges, Shahram Izadi, Patrick L. Olivier, Jamie Daniel Joseph Shotton, Pushmeet Kohli, David G. Molyneaux, Stephen E. Hodges, Andrew W. Fitzgibbon
  • Patent number: 10726255
    Abstract: Systems and methods for stereo matching based upon active illumination using a patch in a non-actively illuminated image to obtain weights that are used in patch similarity determinations in actively illuminated stereo images is provided. To correlate pixels in actively illuminated stereo images, adaptive support weights computations are used to determine similarity of patches corresponding to the pixels. In order to obtain adaptive support weights for the adaptive support weights computations, weights are obtained by processing a non-actively illuminated (“clean”) image.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: July 28, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Adam G. Kirk, Christoph Rhemann, Oliver A. Whyte, Shahram Izadi, Sing Bing Kang
  • Publication number: 20200193638
    Abstract: An electronic device estimates a pose of a hand by volumetrically deforming a signed distance field using a skinned tetrahedral mesh to locate a local minimum of an energy function, wherein the local minimum corresponds to the hand pose. The electronic device identifies a pose of the hand by fitting an implicit surface model of a hand to the pixels of a depth image that correspond to the hand. The electronic device uses a skinned tetrahedral mesh to warp space from a base pose to a deformed pose to define an articulated signed distance field from which the hand tracking module derives candidate poses of the hand. The electronic device then minimizes an energy function based on the distance of each corresponding pixel to identify the candidate pose that most closely approximates the pose of the hand.
    Type: Application
    Filed: February 24, 2020
    Publication date: June 18, 2020
    Inventors: Jonathan James TAYLOR, Vladimir TANKOVICH, Danhang TANG, Cem KESKIN, Adarsh Prakash Murthy KOWDLE, Philip L. DAVIDSON, Shahram IZADI, David KIM
  • Publication number: 20200160109
    Abstract: Values of pixels in an image are mapped to a binary space using a first function that preserves characteristics of values of the pixels. Labels are iteratively assigned to the pixels in the image in parallel based on a second function. The label assigned to each pixel is determined based on values of a set of nearest-neighbor pixels. The first function is trained to map values of pixels in a set of training images to the binary space and the second function is trained to assign labels to the pixels in the set of training images. Considering only the nearest neighbors in the inference scheme results in a computational complexity that is independent of the size of the solution space and produces sufficient approximations of the true distribution when the solution for each pixel is most likely found in a small subset of the set of potential solutions.
    Type: Application
    Filed: January 22, 2020
    Publication date: May 21, 2020
    Inventors: Sean Ryan FANELLO, Julien Pascal Christophe VALENTIN, Adarsh Prakash Murthy KOWDLE, Christoph RHEMANN, Vladimir TANKOVICH, Philip L. DAVIDSON, Shahram IZADI
  • Publication number: 20200160597
    Abstract: Scalable volumetric reconstruction is described whereby data from a mobile environment capture device is used to form a 3D model of a real-world environment. In various examples, a hierarchical structure is used to store the 3D model where the structure comprises a root level node, a plurality of interior level nodes and a plurality of leaf nodes, each of the nodes having an associated voxel grid representing a portion of the real world environment, the voxel grids being of finer resolution at the leaf nodes than at the root node. In various examples, parallel processing is used to enable captured data to be integrated into the 3D model and/or to enable images to be rendered from the 3D model. In an example, metadata is computed and stored in the hierarchical structure and used to enable space skipping and/or pruning of the hierarchical structure.
    Type: Application
    Filed: January 28, 2020
    Publication date: May 21, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Jiawen Chen, Dennis Bautembach, Shahram Izadi
  • Patent number: 10614591
    Abstract: An electronic device estimates a pose of a hand by volumetrically deforming a signed distance field using a skinned tetrahedral mesh to locate a local minimum of an energy function, wherein the local minimum corresponds to the hand pose. The electronic device identifies a pose of the hand by fitting an implicit surface model of a hand to the pixels of a depth image that correspond to the hand. The electronic device uses a skinned tetrahedral mesh to warp space from a base pose to a deformed pose to define an articulated signed distance field from which the hand tracking module derives candidate poses of the hand. The electronic device then minimizes an energy function based on the distance of each corresponding pixel to identify the candidate pose that most closely approximates the pose of the hand.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: April 7, 2020
    Assignee: GOOGLE LLC
    Inventors: Jonathan James Taylor, Vladimir Tankovich, Danhang Tang, Cem Keskin, Adarsh Prakash Murthy Kowdle, Philip L. Davidson, Shahram Izadi, David Kim
  • Publication number: 20200099920
    Abstract: An electronic device estimates a depth map of an environment based on matching reduced-resolution stereo depth images captured by depth cameras to generate a coarse disparity (depth) map. The electronic device downsamples depth images captured by the depth cameras and matches sections of the reduced-resolution images to each other to generate a coarse depth map. The electronic device upsamples the coarse depth map to a higher resolution and refines the upsampled depth map to generate a high-resolution depth map to support location-based functionality.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 26, 2020
    Inventors: Sameh KHAMIS, Yinda ZHANG, Christoph RHEMANN, Julien VALENTIN, Adarsh KOWDLE, Vladimir TANKOVICH, Michael SCHOENBERG, Shahram IZADI, Thomas FUNKHOUSER, Sean FANELLO
  • Patent number: 10579905
    Abstract: Values of pixels in an image are mapped to a binary space using a first function that preserves characteristics of values of the pixels. Labels are iteratively assigned to the pixels in the image in parallel based on a second function. The label assigned to each pixel is determined based on values of a set of nearest-neighbor pixels. The first function is trained to map values of pixels in a set of training images to the binary space and the second function is trained to assign labels to the pixels in the set of training images. Considering only the nearest neighbors in the inference scheme results in a computational complexity that is independent of the size of the solution space and produces sufficient approximations of the true distribution when the solution for each pixel is most likely found in a small subset of the set of potential solutions.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: March 3, 2020
    Assignee: GOOGLE LLC
    Inventors: Sean Ryan Fanello, Julien Pascal Christophe Valentin, Adarsh Prakash Murthy Kowdle, Christoph Rhemann, Vladimir Tankovich, Philip L. Davidson, Shahram Izadi
  • Patent number: 10554957
    Abstract: A first and second image of a scene are captured. Each of a plurality of pixels in the first image is associated with a disparity value. An image patch associated with each of the plurality of pixels of the first image and the second image is mapped into a binary vector. Thus, values of pixels in an image are mapped to a binary space using a function that preserves characteristics of values of the pixels. The difference between the binary vector associated with each of the plurality of pixels of the first image and its corresponding binary vector in the second image designated by the disparity value associated with each of the plurality of pixels of the first image is determined. Based on the determined difference between binary vectors, correspondence between the plurality of pixels of the first image and the second image is established.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: February 4, 2020
    Assignee: GOOGLE LLC
    Inventors: Julien Pascal Christophe Valentin, Sean Ryan Fanello, Adarsh Prakash Murthy Kowdle, Christoph Rhemann, Vladimir Tankovich, Philip L. Davidson, Shahram Izadi
  • Publication number: 20190278380
    Abstract: In one or more implementations, a static geometry model is generated, from one or more images of a physical environment captured using a camera, using one or more static objects to model corresponding one or more objects in the physical environment. Interaction of a dynamic object with at least one of the static objects is identified by analyzing at least one image and a gesture is recognized from the identified interaction of the dynamic object with the at least one of the static objects to initiate an operation of the computing device.
    Type: Application
    Filed: May 15, 2019
    Publication date: September 12, 2019
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: David Kim, Otmar D. Hilliges, Shahram Izadi, Patrick L. Olivier, Jamie Daniel Joseph Shotton, Pushmeet Kohli, David G. Molyneaux, Stephen E. Hodges, Andrew W. Fitzgibbon
  • Patent number: 10409381
    Abstract: Aspects relate to detecting gestures that relate to a desired action, wherein the detected gestures are common across users and/or devices within a surface computing environment. Inferred intentions and goals based on context, history, affordances, and objects are employed to interpret gestures. Where there is uncertainty in intention of the gestures for a single device or across multiple devices, independent or coordinated communication of uncertainty or engagement of users through signaling and/or information gathering can occur.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: September 10, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Meredith June Morris, Eric J. Horvitz, Andrew David Wilson, F. David Jones, Stephen E. Hodges, Kenneth P. Hinckley, David Alexander Butler, Ian M. Sands, V. Kevin Russ, Hrvoje Benko, Shawn R. LeProwse, Shahram Izadi, William Ben Kunz
  • Patent number: 10409490
    Abstract: Assisting input from a keyboard is described. In an embodiment, a processor receives a plurality of key-presses from the keyboard comprising alphanumeric data for input to application software executed at the processor. The processor analyzes the plurality of key-presses to detect at least one predefined typing pattern, and, in response, controls a display device to display a representation of at least a portion of the keyboard in association with a user interface of the application software. In another embodiment, a computer device has a keyboard and at least one sensor arranged to monitor at least a subset of keys on the keyboard, and detect an object within a predefined distance of a selected key prior to activation of the selected key. The processor then controls the display device to display a representation of a portion of the keyboard comprising the selected key.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: September 10, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: James Scott, Shahram Izadi, Nicolas Villar, Ravin Balakrishnan
  • Patent number: 10331222
    Abstract: In one or more implementations, a static geometry model is generated, from one or more images of a physical environment captured using a camera, using one or more static objects to model corresponding one or more objects in the physical environment. Interaction of a dynamic object with at least one of the static objects is identified by analyzing at least one image and a gesture is recognized from the identified interaction of the dynamic object with the at least one of the static objects to initiate an operation of the computing device.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: June 25, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: David Kim, Otmar D. Hilliges, Shahram Izadi, Patrick L. Olivier, Jamie Daniel Joseph Shotton, Pushmeet Kohli, David G. Molyneaux, Stephen E. Hodges, Andrew W. Fitzgibbon
  • Patent number: 10311282
    Abstract: Region of interest detection in raw time of flight images is described. For example, a computing device receives at least one raw image captured for a single frame by a time of flight camera. The raw image depicts one or more objects in an environment of the time of flight camera (such as human hands, bodies or any other objects). The raw image is input to a trained region detector and in response one or more regions of interest in the raw image are received. A received region of interest comprises image elements of the raw image which are predicted to depict at least part of one of the objects. A depth computation logic computes depth from the one or more regions of interest of the raw image.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: June 4, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Jamie Daniel Joseph Shotton, Cem Keskin, Christoph Rhemann, Toby Sharp, Duncan Paul Robertson, Pushmeet Kohli, Andrew William Fitzgibbon, Shahram Izadi
  • Patent number: 10234941
    Abstract: A wearable sensor for tracking articulated body parts is described such as a wrist-worn device which enables 3D tracking of fingers and optionally also the arm and hand without the need to wear a glove or markers on the hand. In an embodiment a camera captures images of an articulated part of a body of a wearer of the device and an articulated model of the body part is tracked in real time to enable gesture-based control of a separate computing device such as a smart phone, laptop computer or other computing device. In examples the device has a structured illumination source and a diffuse illumination source for illuminating the articulated body part.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: March 19, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Kim, Shahram Izadi, Otmar Hilliges, David Alexander Butler, Stephen Hodges, Patrick Luke Olivier, Jiawen Chen, Iason Oikonomidis
  • Publication number: 20180356883
    Abstract: An electronic device estimates a pose of a face by fitting a generative face model mesh to a depth map based on vertices of the face model mesh that are estimated to be visible from the point of view of a depth camera. A face tracking module of the electronic device receives a depth image of a face from a depth camera and generates a depth map of the face based on the depth image. The face tracking module identifies a pose of the face by fitting a face model mesh to the pixels of a depth map that correspond to the vertices of the face model mesh that are estimated to be visible from the point of view of the depth camera.
    Type: Application
    Filed: June 7, 2018
    Publication date: December 13, 2018
    Inventors: Julien Pascal Christophe VALENTIN, Jonathan James TAYLOR, Shahram IZADI
  • Publication number: 20180350088
    Abstract: An electronic device estimates a pose of one or more subjects in an environment based on estimating a correspondence between a data volume containing a data mesh based on a current frame captured by a depth camera and a reference volume containing a plurality of fused prior data frames based on spectral embedding and performing bidirectional non-rigid matching between the reference volume and the current data frame to refine the correspondence so as to support location-based functionality. The electronic device predicts correspondences between the data volume and the reference volume based on spectral embedding. The correspondences provide constraints that accelerate the convergence between the data volume and the reference volume. By tracking changes between the current data mesh frame and the reference volume, the electronic device avoids tracking failures that can occur when relying solely on a previous data mesh frame.
    Type: Application
    Filed: May 31, 2018
    Publication date: December 6, 2018
    Inventors: Mingsong DOU, Sean Ryan FANELLO, Adarsh Prakash Murthy KOWDLE, Christoph RHEMANN, Sameh KHAMIS, Philip L. DAVIDSON, Shahram IZADI, Vladimir Tankovich
  • Publication number: 20180350105
    Abstract: An electronic device estimates a pose of a hand by volumetrically deforming a signed distance field using a skinned tetrahedral mesh to locate a local minimum of an energy function, wherein the local minimum corresponds to the hand pose. The electronic device identifies a pose of the hand by fitting an implicit surface model of a hand to the pixels of a depth image that correspond to the hand. The electronic device uses a skinned tetrahedral mesh to warp space from a base pose to a deformed pose to define an articulated signed distance field from which the hand tracking module derives candidate poses of the hand. The electronic device then minimizes an energy function based on the distance of each corresponding pixel to identify the candidate pose that most closely approximates the pose of the hand.
    Type: Application
    Filed: May 31, 2018
    Publication date: December 6, 2018
    Inventors: Jonathan James TAYLOR, Vladimir TANKOVICH, Danhang TANG, Cem KESKIN, Adarsh Prakash Murthy KOWDLE, Philip L. DAVIDSON, Shahram IZADI, David KIM
  • Publication number: 20180350087
    Abstract: An electronic device estimates a depth map of an environment based on stereo depth images captured by depth cameras having exposure times that are offset from each other in conjunction with illuminators pulsing illumination patterns into the environment. A processor of the electronic device matches small sections of the depth images from the cameras to each other and to corresponding patches of immediately preceding depth images (e.g., a spatio-temporal image patch “cube”). The processor computes a matching cost for each spatio-temporal image patch cube by converting each spatio-temporal image patch into binary codes and defining a cost function between two stereo image patches as the difference between the binary codes. The processor minimizes the matching cost to generate a disparity map, and optimizes the disparity map by rejecting outliers using a decision tree with learned pixel offsets and refining subpixels to generate a depth map of the environment.
    Type: Application
    Filed: May 31, 2018
    Publication date: December 6, 2018
    Inventors: Adarsh Prakash Murthy KOWDLE, Vladimir TANKOVICH, Danhang TANG, Cem KESKIN, Jonathan James Taylor, Philip L. DAVIDSON, Shahram IZADI, Sean Ryan FANELLO, Julien Pascal Christophe VALENTIN, Christoph RHEMANN, Mingsong DOU, Sameh KHAMIS, David KIM